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ABSTRACT 
 

 This paper investigates the reason for increasing team size in the U.S. patent 
data.  On the one hand, Jones (2005) finds that greater specialization over time by R&D 
workers increases team size.  Alternatively, team size can increase because R&D 
workers are getting larger ideas over time too.  A large idea is an idea that requires a 
large breadth of expertise to implement.  R&D workers who conceive large ideas are 
connecting distant knowledge from outside their own area of specialization and as a 
result must form large teams to implement these ideas too.  To measure the size of 
ideas, this paper uses the Olsson model to create technological distance measures 
which proxy for idea size and finds that technological distances are increasing.  Thus, 
greater specialization only partially explains the increases in team size. 
 
  
 
 
 
 



INTRODUCTION 
 
The Jones model of growth focuses on the R&D worker as the unit of analysis where 
new ideas increase productivity in the economy.  One feature of the model is that it 
predicts increasing team size over time as knowledge matures; and, Jones finds 
empirical support for this in the U.S. patent data over the period 1975-1999 (2005).   
 
The decision to form a team is straightforward: an R&D worker chooses to form a team if 
the idea he conceives has a larger breadth of expertise than his own breadth of 
expertise obtained from his years in school.  If it does, the R&D worker forms a team that 
together covers the necessary breadth of expertise needed to implement the idea.  An 
idea that requires a large breadth of expertise to implement connects distant knowledge 
relative to the R&D worker’s specialty.  For the purpose of this paper these ideas are 
referred to as ‘big ideas’.   
 
For example, a big idea might connect knowledge in computer science with knowledge 
in chemistry.  In order for an R&D worker with a specialty in chemistry to implement this 
idea he must form a team with a computer scientist (at the least).  On the other hand, 
seemingly small ideas may require a team if the degree of specialization is large, for 
example, a specialist in inorganic chemistry may need to form a team to implement an 
idea he has in analytical chemistry because he does not have the required expertise.  
 
As Jones notes, one reason that team size could be increasing is that as knowledge 
becomes more complex individual R&D workers choose a smaller breadth of expertise, 
i.e., they specialize in narrower areas of knowledge.  Hence, they rely on increasing 
larger teams to implement the ideas they conceive that are outside their increasingly 
smaller specialization.  However, if individual R&D workers are conceiving bigger ideas 
over time, this ‘big ideas’ effect would require larger teams too.  Overall, the increase in 
team size documented by Jones could arise from 2 separate (simultaneous) effects: 1) 
increase in specialization and 2) increase in idea size.   
 
To investigate the second point this paper uses a set-theoretic approach developed by 
Olsson (2000; 2005) to construct technological distance measures from the U.S. patent 
data that proxy for idea size.  Overall, 3 different technological distance measures are 
constructed for each utility patent by measuring the distance between the citing patent 
class and each cited patent class.  Thus, a new patent in patent class 71: chemistry 
fertilizer that makes a citation to a patent in patent class 455: telecommunications has a 
large technological distance and is more likely to require a team of R&D workers to 
implement.  On the other hand, a new patent in patent class 71: chemistry fertilizer that 
makes a citation to a patent in the same patent class 71: chemistry fertilizer is more 
likely to be invented by solo R&D worker since the technological distance is small. 
 
This paper argues that these technological distances are a good proxy for idea size in 
the Jones model for 2 reasons: 1) technological distance is positively related to team 
size: larger distances require larger teams, and 2) distances for solo R&D workers are 
smaller than distances for teams of R&D workers.  While this paper presents preliminary 
results both properties hold on average for technological distance created from U.S. 
patents in 1975 and 1995.  
 
The time trend of technological distance from 1975 – 1995 provides strong evidence that 
idea size is increasing over time.  This means that a joint explanation for increasing team 
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size arising from specialization and large ideas is likely, i.e., team sizes are increasing 
because R&D workers are specializing and because R&D workers are getting larger 
ideas over time.  Other findings reveal a specialization paradox concerning solo R&D 
workers: if increases in the complexity of knowledge were forcing R&D workers to 
specialize the data should reveal a decrease in the technological distances solo R&D 
workers implement by themselves.  However, this study indicates that solo R&D workers 
are increasingly implementing ideas with larger technological distances at the same 
pace as teams of R&D workers (though smaller in absolute terms).   
 
 

THE JONES MODEL 
  
The following model of economic growth is based on Jones (2005).  The distinguishing 
feature of this model is that it focuses on the negative impact of the burden of knowledge 
on successive generations of R&D workers.  This section outlines the model in general 
emphasizing the results that pertain to increasing team size.  
 
Consider the typical firm which produces a homogeneous good, , 

where, , is the amount of output produced by firm j, and, 

( ) ( ) ( )j j jy t X t l t=

( )jy t ( )jX t , is the productivity 

level of firm j, and, , is the amount of labor hired by firm j.  The total output for the 
entire economy is:  

( )jl t

 
     ( ) ( ) ( )YY t X t L t=             (1)  
 
The variable, ( )X t , is the leading edge of technology for the entire economy, , is 
the aggregate productive labor force.  The revenues of the firm are completely 
exhausted in wage payments and royalty payment to production workers and R&D 
workers respectively, 

( )YL t

( ) ( ) ( ) ( ) ( ) ( )j j jX t l t w t l t r t l t= + , where, , is the wage to 
production workers, and, , is the royalty payment to R&D workers for use of a 
patented invention.  The wage paid to a production worker is:  

( )w t
( )r t

 
    ( ) ( ) ( )w t X t r t= −             (2) 
 
Workers in the model get utility from the present value of expected lifetime non-interest 
income with a hazard rate of death, φ , defined by the following general intertemporal 
utility function at the time of birth τ :  
 

               (3) ( )( ) ( ) tU c t e φ τ

τ
τ

∞ − −= ∫ dt

dt

 
Since the economy has 2 types of workers with differing sources of income the utility 
function will depend on whether it is income from a production workers or income from a 
R&D worker.  The choice of career is decided at birth so that production workers receive 
lifetime income from wages,       
 

               (4) ( )( ) ( )wage tU w t e φ τ

τ
τ

∞ − −= ∫
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On the other hand, R&D workers receive an expected flow of income, , from 
licensing their invention to the productive sector.  The difference between production 
workers and R&D workers is that R&D workers must pay educational costs, , to get 
to the frontier of knowledge in order to conceive ideas that generate income.  Since 
income to R&D workers depends on their field of specialization, , and the associated 
educational costs for becoming an expert in that field, utility varies for different R&D 
workers.   

( )iv t

( )iE t

is

 

    & ( )( ) ( ) ( )R D t
i iU v t e dtφ τ

τ iEτ τ
∞ − −= −∫           (5) 

 
     
For R&D workers, getting to the frontier of knowledge is expensive if the distance to the 
frontier is large.  In addition, if the distance to the frontier is large and the individual 
decides to study a wide breadth of knowledge then educational costs will be even 
higher.  For example, an individual who decides to double major in chemistry and math 
will have a higher educational cost than a single major in either assuming the depth of 
knowledge in each field is the same.  Thus the educational costs for individual, i, 
depends on the (chosen) breadth of expertise, , and the depth of knowledge in that 
specialty at the time of birth, 

ib
( )D τ .  Educational cost are determined as,    

   
    ( ) ( ( ))i iE b D ετ τ=                                     (6) 
  
The elasticity of educational costs to learning more knowledge is captured by, 0ε > .  
 
Over time the depth of knowledge in any field of specialization, , changes and differs 
from other fields.  For example, in 1950 the depth of knowledge in the field of computers 
was minimal compared to what it is today.  On the other hand, in 2007 the depth of 
knowledge in computers might be considered deeper than in economics.  For now, the 
model assumes that the depth of knowledge is equal in all fields, and the total depth of 
knowledge at any moment in time is given by, .   

is

( )D t
 
New ideas in all fields of knowledge change the total depth of knowledge, .  In 
some areas, new ideas might completely replace old ideas (reducing the depth); but, in 
other areas new ideas might be viewed as complementary to old ideas (increasing the 
depth).  Regardless of their impact on depth, new ideas increase productivity, 

( )D t

( )X t , in 
the economy with, δ , capturing the direction of the impact on the depth:    
 
    ( ) ( ( ))D t X t δ=             (7) 
 
To summarize, R&D workers must bring themselves to the frontier of knowledge in their 
chosen specialty before they can create new innovative ideas.  Once an R&D worker is 
educated the decision to form a team depends on their own breadth of expertise and the 
size of the ideas they conceive.   
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Ideas, Expertise, and Teams 
 
In general, the decision by R&D workers to pick an area of specialization, , and a 
breadth of expertise,  effects the ideas they can implement.  The larger their breadth 
of expertise the more likely they can implement an idea without needing assistance from 
anyone.  In the limiting case of omnipotence, a solo R&D worker can implement any idea 
by himself.  However, if the R&D worker does not have the breadth of expertise to 
implement the idea then he forms a team that has the necessary expertise to implement 
the idea.  Specifically, the R&D worker can only implement a new idea if his breadth of 
expertise, , encompasses the breadth of expertise needed to implement the idea.   

is

ib

ib
 
Jones assumes that an idea, , arrives randomly with a hazard rate, ni λ ,  to the R&D 
worker with the following 2 properties: 1) a random breath of expertise, , needed to 
implement the idea and 2) 

k
γ , which reflects the impact of the idea on economic 

productivity.  The random breadth of expertise, , is drawn from a smooth distribution 
function,  F.  If the R&D worker has the required expertise, 

k
ik b≤ , he develops the 

idea as a solo R&D worker; however, if the R&D worker does not have the required 
expertise, , he forms a team of R&D workers to implement the idea.   ik b>
 
The model does not assume how R&D workers form new ideas, only that the new 
idea, , comes from within the R&D worker’s breadth of expertise.  Thus, someone 
trained as a chemist does not get new ideas completely within computer science; 
however, a chemist can get ideas that combine knowledge in chemistry and computer 
science.  This paper assumes that new ideas are formed as a combination of ideas, and 
where at least one part of the combination is in the R&D worker’s specialty.  This 
process can be a deliberate act by the R&D worker or can happen passively in the R&D 
worker’s mind.  Thus, when a new idea arrives to the R&D worker the random breadth of 
expertise, , is the distance between the knowledge used to create the idea.  The solo 
or team decision still depends the R&D worker’s breadth of expertise, , relative to, k . 

ni

k
ib

 
Regardless of how the idea is implemented (solo or team) once it takes the form of a 
patent it can be licensed to the productive workers of the economy.  The product market 
of the invention has a size, ( )M t , determined by the number of productive workers, 

, that the invention can be licensed to for the life of the patent, .   ( )YL t% z
 

    ( ) ( )
t z

Yt
M t L t

+
= ∫ % %dt                       (8) 

 
The lump-sum value of the patent is, ( ) ( )V t M tγ= , depends on the size of the market 
and the impact of the idea on economic productivity.  The expected flow of income to the 
R&D worker is, v Vλ= , which can be re-written to be a function of 3 things: the 
probability of getting an idea, the impact of the idea on productivity, and the total market 
size for the inventions, ( )v M tλγ= .  Furthermore, Jones defines R&D worker’s 
individual productivity as, ( )i tθ λγ= , which is the impact the R&D worker’s idea will 
have on the economy and is parameterized in the following way: 
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    ( ) ( ) ( , )i it X t L t s bi

χ σ βθ −=            (9) 
 
The innovative capacity of an individual R&D worker takes a linear multiplicative form 
determined by the current level of productivity, ( )X t ; the mass of individuals sharing the 
R&D worker’s specialty, ; and, the R&D workers chosen breadth of expertise, .  
The parameter, 

( , )iL t s ib
χ , measures the impact of new ideas on individual productivity.  The 

parameter, σ , measures the impact of  crowding in one’s specialty on individual 
productivity.  Lastly, the parameter, β , measures the impact of specialization on 
individual productivity.   
 
Combining everything, the expected flow of income to R&D worker i,   
 
            (10) ( ) ( ) ( , ) ( )i iv t X t L t s b M tχ σ β−= i

 
The equilibrium conditions for solving this problem are explained in Jones (2005) and will 
not be restated here except to say that R&D worker maximizes the following equation at 
birth,  
  

    ( )

,
max ( ) ( , ) ( ) ( ( ))

i i

t
i i is b

X t L t s b M t e dt b Dχ σ β φ τ ε

τ
τ

∞ − − − −∫        (11)  

 
The variable of interest for this paper is the equilibrium choice of the breadth of 
expertise, .  More specialization implies that the value of, ib∗

ib∗ , is getting smaller over 
time which means larger teams will be needed.  Jones shows that R&D worker 
specialization will occur “if the depth of knowledge, rises relatively quickly given the ease 
with which knowledge can be learned” (2005), i.e., 1/δ ε> .  In addition, corollary 1 of 
Jones shows that along a balanced growth path of the economy the following conditions 
holds,   
 
  ( ) 0 1 ( )team t iff specializationδ ε> >  
     
This result which Jones states as “the behavior of the average team size, ( )team t , 
follows the same condition as specialization...more specialized workers rely on 
teamwork for the implantation of their ideas” (2005).  But, recall that the mechanism that 
causes team size to increase in the Jones model is the struggle that every R&D worker 
faces – implementing their ideas.  As the value of, ib∗ , is getting smaller the probability 
of, , gets larger.   However, by focusing exclusively on specialization and without a 
measure for, , it is hard to know if this is true.  If R&D workers are getting increasingly 
larger ideas over time then team size will increase and the impact of specialization on 
team size will be reduced.   

ik b>
k

 
In order to determine if this is happening, I propose nesting the Olsson model of 
technological distance into the Jones model.  The purpose of using the Olsson model is 
to develop theoretical and empirical justification for constructing a proxy for the variable, 
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k , in the Jones model and thus determine if increasing team sizes observed in the U.S. 
patent data comes from the impact of larger ideas.   
 
 

THE OLSSON MODEL 
 
Olsson’s model constructs a multidimensional idea space where the distance between 
ideas can be measured.  If the distance between 2 ideas is small then these ideas are 
close together in idea space and thus are more closely related than if they were far 
apart.  Ideas that have a small technological distance require a smaller breadth of 
expertise to implement.  When ideas arrive randomly to the R&D worker in the Jones 
model they arrive with a random breadth of expertise, , that is measured in the Olsson 
model as a technological distance. 

k

 
The problem with using the Olsson model is that technological distance is difficult to 
calculate because it requires the practitioner to score every idea based on the 
‘dimension of human thinking’ (2005) – though theoretically feasible, practically it is 
impossible.  My approach - while keeping within the mathematical framework of the 
Olsson model - introduces the theoretical concept of classes and uses these classes to 
construct 3 distance measures (maximum, total, and average).  Instead of scoring a new 
idea based on the ‘dimensions of human thinking’, this approach assumes that similar 
ideas will share the same area in idea space.   
 
That is, ideas related to chemistry are close together in idea space and they share the 
same technological class: chemistry.  Zooming out from this technological class would 
eventually incorporate ideas in chemistry and physics in the same technological class: 
hard sciences.  Zooming out even more would incorporate a wide array of ideas from 
chemistry to economics.  Therefore, measuring the technological distance between 2 
ideas in idea space simplifies to determining whether the 2 ideas occupy the same 
technology class, or not.  For example, the technological distance between chemistry 
and physics is smaller than between chemistry and economics.  The next few sections 
will describe the construction of idea space and technological distance.   
 
 
Idea Space 
  
Definition 1: An idea is a metaphysical outcome of a thinking process that has been, is, 
or might be stored by at least one human brain. 
 
Definition 2: is the infinite, universal set of all possible ideas.   I

 
A key assumption of this model is that all human thinking produces ideas, i.e., thinking 
about lunch is an idea.  Or, (you) thinking about a cure for obesity is an idea: most 
people produce mundane ideas that contribute nothing to society’s flow of knowledge.   
 
Definition 3: I  is the Euclidean metric space, or the idea space, associated with  
such that .  

I
vI +⊂ ℜ

 
Definition 4: The location of an idea m∈I  in the idea space I  is . mi
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Olsson notes that the difference between, , the universal set of ideas, and I I , the idea 
space is that the universal set of ideas is not a metric space, that is, the idea m has no 
dimensionality in .  Defining a metric space, I I , gives an idea, m∈I  dimensionality 
which can be used to compare the idea, m, to other ideas in, .   Each idea, , in 
the universal set of ideas, maps to a unique location in, 

I m∈I
I , the idea space.  The location 

of an idea in idea space is defined by the dimensions of human thinking (explained 
below), and not by what the object looks like.  For example, the sound of water (the 
outcome of a thinking process) is not an object, but is still an idea (by definition 1).   
 
The location of any idea, , in idea space is a v-dimensional column vector, where the 
v-dimensions represent the dimensions of human thinking.  For example, consider any 
idea, , and assume a world where there are only 3 dimensions of human thinking 
(v=3): complex (c), labor (l), and mechanical (a).  Any idea in this simple world has the 
following column vector representation: 

mi

mi ∈I

 

  

3

( )
( )

( )
m

v

complex c
i labor l

mechanical a
=

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
If the idea, , relies heavily on the mechanical dimension of human thinking, then the 
mechanical coordinate (a) is a large real number.  On the other hand, if the idea relies 
on the complex dimension of human thinking, then the coordinate (c) is a large real 
number.  Likewise, all ideas in this (simple) world are defined using this method, that is, 
every idea is judged based on the same 3 dimensions of human thinking.  The numeric 
value of each of the 3 coordinates (complex, labor, and mechanical) plots a single point 
in idea space.  With only 3 dimensions of human thinking, the idea space for this world is 
a 3-dimensional graph with axes representing the complex dimension, labor dimension, 
and mechanical dimension. 

mi
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Figure 1.  Idea Space for v=3.
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The placement of the 3 ideas ( ) in figure 1 gives an indication of what ideas in 
idea space could look like.  The idea, , has a higher numerical value for the 
mechanical dimension of human thinking than the other two ideas, but has about the 
same level of complexity as the idea .  All ideas, defined by definition 1, can be placed 
in this simple 3-dimensional space; in this example, the dimensions of human thinking 
are small and the three dimensions chosen are only illustrative.  Alternatively, one could 
pick electrical, chemical, and medical as the three dimensions in figure 1 and re-classify 
the three ideas ( ). 

, ,c m ni i i

ci

ni

, ,c m ni i i
 
Definition 5: For any 2 ideas ,l mi i I∈ the distance function ( , )l md i i +∈ℜ  is the 
distance between , which satisfies the following conditions: (i)  and 

, (ii) 
li and im ( , ) 0l md i i ≥

( , ) 0l m l nd i i iff i i= = ( , ) ( , )l m m l m ld i i d i i i i I= ∀ ∈ , and (iii) 
. ( , ) ( , ) ( , )l m m o l od i i d i i d i i+ ≥

 
Definition 6:  Given 0ε > and an idea  in the metric space ( ,mi )I d , the ε-neighborhood 
of  is the set mi ( ) { : ( , ) }m l m lV i i I d i iε ε= ∈ < . 
 
Definition 7:  A class is a set of similar ideas ( )c qV i I∈ defined by c +∈ℜ . 
 
The distance function is how the breadth of expertise will be measured and the class 
definition simplifies how the distance between ideas is calculated.  
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The Knowledge Set 
 
Definition 1 states that the metaphysical outcome of a thinking process is an idea; but, 
this definition is too broad to be useful, since an R&D worker can fill idea space with 
thousands of ideas daily.  The next set of definitions and assumptions constrains the 
idea space, I , to ideas that are useful to science at a given moment in time: the 
knowledge set is the most important subset of idea space.     
 
Definition 8: The knowledge set is  which has the following characteristics: (i) 

,i.e., the knowledge set is a subset of idea space 
tA

v
tA I +⊂ ⊂ ℜ I , which is defined in 

metric space .   (ii)v
+ℜ C

t tI A A= ∪ , i.e., the knowledge set and its complement is what 
constitutes idea space.  (iii)  is infinite, closed, and bounded.tA  

 
The knowledge set, , is all useful knowledge as of time t, or as Olsson states: “all 
ideas embraced by science at time t”

tA
 (2000).  Here science refers to the broad European 

definition of the word meaning systematic inquiry (McCloskey, 2000) and not to the 
specific Anglo-American definition usually referring only to biology, physics, chemistry, 
and the other hard-sciences.  Accordingly, any field of systematic inquiry contributes 
knowledge to the knowledge set: ideas in political science, literature, and economics are 
in the knowledge set, .  Furthermore, research and development at firms where 
systematic inquiry is used to improve a consumer product, make a process 
improvement, or streamline supply chains is also considered science. 

tA

 
Incremental Innovation in the Knowledge Set 
 
In general, the knowledge set in the Olsson model expands over time from R&D workers 
getting ideas in the Jones model.  This knowledge creation in the Olsson model is 
modeled explicitly as incremental innovation where new ideas are a convex combination 
of old ideas on the boundary of the knowledge set (the knowledge frontier).  The 
distance between the connected ideas is measured by the distance function, , in 
idea space which is the breadth of expertise, k , in the Jones model.   

( )d ⋅

 
Assumption 1: An incremental innovation is a linear, binary combination of two 
technologically close ideas such that (i) , (l c ti i bdy A∈ ) ( , )l cd i i d≤ , and (ii) that the newly 
formed idea (1 ) (0,1)l c n ti i i A whereω ω ω+ − = ∉ ∈ . 
 
Once a new idea is created the region formed by the boundary of the knowledge set and 
the idea will be exploited quickly thereafter (Olsson, 2000), i.e., the entire interior region 
will become part of the knowledge set depicted in figure 2.  The reason for this might be 
imitators copying the idea with minor changes to make it different.  This behavior occurs 
frequently in the patent literature with attempts to patent around an existing patent.  A 
long distance connection may cause a flurry of subsequent ideas that slightly modify the 
original long distance idea; the longer the distance between any 2 ideas the larger the 
space that is carved out of the region.   
  
There is an upper limit to the distance between ideas that an R&D worker can connect in 
assumption 1.  Olsson notes the following: “the upper bound of, d , might be thought of 
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as the longest distance between two ideas that an R&D worker is capable of crossing for 
a combinational attempt” (2005).  The distance that a single R&D worker can traverse 
may depend on the education, the intelligence, and the creativity of the R&D worker 
engaged in systematic inquiry.  I equate the upper bound, d , as the limit of individual 
bounded rationality, which constrains the amount of information individuals can process 
and limits the distance that individuals by themselves can traverse.   
 
As noted earlier, the conception of an idea, , in assumption 1 is different from the 
implementation of the idea.  The implementation (solo or team) of the idea, , depends 
on the technological distance between the ideas used to create it, , relative to the 
R&D workers own breadth of expertise, .  R&D workers who form teams can 
implement ideas that have larger technological distances relative to their own breadth of 
expertise.  However, if the technological distance is small (within his own expertise) then 
the idea is implemented without a team. 

ni

ni
( , )l cd i i

ib

 
A pictorial representation of both situations is presented in figure 2.  Here the boundary 
of the knowledge set, , represents the frontier of knowledge for particular 
knowledge discipline.  The circle created by the radius, , depicts the collection (or 
class) of ideas that an R&D worker has learned and is analogous to, , the R&D 
worker’s chose breadth of expertise.  The technological distance, , depicts the 
linear distance between 2 ideas that were convexly combined to form new knowledge, 

, according to assumption 1.  The technological distance between the 2 ideas, 
, is analogous to, , the breadth of expertise required to implement the idea.  If 

the new idea, , comes from knowledge within the R&D worker’s breath of expertise, , 
(represented by the circle) then it can be implemented as a solo invention.  On the other 
hand, if the R&D worker conceives an idea the combines more distant knowledge, 

, in figure 2 which extends outside the R&D worker’s breadth of expertise, , 
then it requires a team to implement.  

( )tbdy A
c

ib
( , )l qd i i

ni
( , )l qd i i k

ni ib

( , )l md i i ib

 
 

  

c

( )tbdy A

( , ) Teaml mc d i i d< < →

( , ) Solol qd i i c d< < →

d

mi

ni

ni

qi

li

tA

Figure 2.  Implementing Inventor Ideas.
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Specialization over time works by reducing the size of, c , in figure 2; thus, making it 
harder to implement ideas alone.  On the other hand, increasing idea size works by 
increasing the technological distances, ( )d ⋅ , that R&D workers are conceiving.   
 
Previously measuring the distance between ideas, ( )d ⋅ , gave an indicator of similarity; 
however, in practice this distance measure is nearly impossible to implement.  This 
stems from the complexity of a large v-dimensional idea space and assigning ideas 
coordinate values based on each dimension of human thinking.  An easier (though less 
precise) way is to use the definition of classes.  For example, starting from an arbitrary 
idea, , in idea space and defining a small value, cli +∈ℜ , creates a class of nearly exact 
ideas,  .  Increasing the size of  creates a larger class of similar ideas around the 
idea, .  A still larger value of c  includes ideas that are very different from the original 
idea, ; but, where all of these ideas are still related.   

( )c lV i c

li

li
 
But, instead of just increasing the size of , use breakpoints that define specific larger 
and larger classes as depicted in figure 3 but with patent notation.  For example, the first 
breakpoint, , defines a radius that captures all ideas that are nearly exact into one 
class, .  The second breakpoint, , defines a slightly larger radius that captures 

all ideas that are similar though not exact into one class, .  From this point of view, 
the distance between ideas depends on whether an idea is within a particular radii of 
another idea: an idea that is located within the c

c

1c

1
( )c lV i 2c

2
( )c lV i

1 radius is more closely related to, , 
than an idea within the c

li
3 radius.  Furthermore, if the distance between, , and each 

breakpoint radius is known then this would give a general measure of how far ideas are 
from each other.  Having a large number of breakpoints adds precision to this technique 
without resorting to labeling each idea based on the dimensions of human thinking.  

li

 
Admittedly, the cost of this technique is precision: determining the distance between 
ideas within the same class is difficult.  On the other hand, this technique provides a 
good way to measure ideas that are far apart.  Going forward calculating the distance 
between ideas in idea space will use the distance technique described above (and not 
by the dimensions of human thinking described by Olsson).   
 
Since patents are a subset of the ideas conceived and implemented during a specific 
time period this paper constructs 3 technological distance measures for over 2 million 
U.S. patents granted between 1975 and 1999 based on the patent classes and 
aggregation method suggested by Jaffe and Trajtenberg (2002).  In addition, for each 
distance constructed the associated team size was calculated based on the number of 
R&D workers on the patent.   
 
 

METHODOLOGY 
 

The previous sections outlined the theory of the Olsson model and introduced a method 
for calculating distance within the Olsson model of ideas.  This section applies the 
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distance technique to the U.S. patent data, meaning that R&D workers engage in 
systematic inquiry and convexly combine old knowledge (cited patents) to produce new 
ideas (citing patents).  In figure 3, the idea notation, mi At∈ , is switched to patent 
notation, m tp A∈ . 
 
NBER U.S. Patent Data 1975 – 1999 
 
To my knowledge there are 2 locations to download this data: the National Bureau of 
Economic Research (NBER) and the book Patent, Citations, & Innovations by Jaffe and 
Trajtenberg.  Each source has consolidated and made available 5 large patent files in 3 
formats.  The NBER source is on the web at http://www.nber.org/patents/; the file 
formats are (1) SAS .tpt format and (2) ASCII II .csv format.  The second source has the 
data stored in 1 additional format available with the CD-ROM that comes with the book: 
(3) dBase .dbf format.  The original data for both sources is the United States Patent and 
Trademark Office (USPTO).  All database work for this paper was done in SQL using the 
ASCII data from the NBER.   
 
The 5 patent files are: (1) Pat63_99, (2) Cite75_99, (3) Coname, (4) Match, and (5) 
Inventor.  The main file Pat63_99 contains detailed patent level information for all utility 
patents (nearly 3 million) granted between 1963 and 1999.  The file has 23 variables, the 
first 10 variables are the original variables downloaded directly from the USPTO, and the 
remaining 13 variables are variables constructed by Jaffe and Trajtenberg.  The second 
file Cite75_99 contains a pairwise list of all utility patents granted between 1975 and 
1999 and the patents they cited back to 1963; the file contains over 16 million records.   
 
Joining the Pat63_99 and Cite75_99 file, 3 distance measures (for each patent) were 
calculated.  For now, a simple point system assigns a distance depending on how far the 
citing patent, np ,  is from the cited patent.  If the citing patent shares the same class, , 
as the cited patent then the distance is small (distance = 1); if the patents share the 
same subcategory, , then the distance is larger (distance = 2); if the patents share the 
same category, , then the distance is still larger (distance = 3); if the patents come 
from different categories, , then the distance is still larger (distance = 4).  

1c

2c

3c

4c
 
Again, a patent distance score measures the breadth of expertise required to implement 
the patent.  Long distance connections from different patent categories are given the 
highest points; the distance between  in figure 3 is 4, since it connects 
knowledge from a completely different category.  This long distance connection is 
equivalent to a patent in the category Chemical citing a patent in Computers.    

( , )n md p p
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Figure 3.  Distance Point System.
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The first measure of distance is the maximum distance which scores each patent based 
on the farthest distance among all the citations it made.  The max distance adjusts for 
patents that are making citations that are useless or unnecessary.  The max distance for 
the citing patent, np , in figure 3 is equal to 4.   
 
Max Distance( ) ( ( , ))

1,...,
: the number of citations made by citing patent

: each different cited patent

n i n i

n

p Max d p p
for i N
N p
i

=
=

 

 
The second measure is the total distance for each patent and is measured by calculating 
the distance between each citing and cited patent and then aggregating.  For example, 
the total distance for the patent in figure 3 is equal to 10.  This measure rewards patents 
by giving at least 1 point for each citation and more points for citations in farther patent 
classes.  
  

1

Total Distance( ) ( , )

: the number of citations made by citing patent
: each different cited patent
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=∑
 

  
The third measure is the average distance for each patent and is measured by 
calculating the distance between each citing and cited patent, aggregating, and dividing 
by the number of citations.  For example, the average distance for the patent in figure 3 
is equal to 2.5.  This measure rewards patents that make long distances per citation; 
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thus if all the citations in figure 3 were made within the same category (and outside the 
subcategory) the average distance for this patent would be 3.   
 

1
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 PRELIMINARY EMPIRICAL RESULTS 
 

Technological Distances and Team Size 
  
Jones (2005) has already provided evidence that team size is increasing over time; the 
goal now is explain why this is happening.  Since this paper proposes that technological 
distance measures the breadth of expertise needed to implement an idea at least 2 
properties of technological distance should hold.  First, it should be true that team size is 
positively related to technological distance.  The reason for this is that ideas that span 
large technological distances span a large area of expertise and thus require larger 
teams to implement.  Table 1 and table 2 show that this property holds across all 3 
technological distance measures in 1975 and 1995 respectively.  Additionally, figure 3 
and figure 4 show the graphical results from table 1 and 2 for the average total distance 
(ATD) measures for 1975 and 1995; and together they show a shift upwards in average 
total distance graph across all team sizes.   
 
 

Table 1: Team Size for U.S. R&D Workers and Average Distances 1975 
     
Team Size Total 

Distance 
Max 
Distance 

Average 
Distance 

Observations 

1 (solo) 7.00 2.50 1.86 35008 
2 7.57 2.58 1.92 15258 
3 7.90 2.62 1.96 6112 
4 7.65 2.57 1.98 2224 
5 7.79 2.64 2.01 827 
6 7.62 2.56 1.91 349 
7 7.38 2.65 2.11 141 
8 7.30 2.40 1.84 84 
9 5.96 2.34 1.83 50 
10 6.71 2.54 2.04 10 
     
a Excluded from the table are team sizes greater than 10 
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Table 2: Team Size for U.S. R&D Workers and Average Distances 1995 

     
Team Size Total 

Distance 
Max 
Distance 

Average 
Distance 

Observations 

1 (solo) 19.34 2.99 1.94 53761 
2 22.79 3.07 2.02 23688 
3 23.28 3.10 2.05 21007 
4 23.37 3.12 2.07 11460 
5 23.57 3.11 2.08 5865 
6 24.66 3.18 2.12 3082 
7 25.80 3.14 2.11 1568 
8 22.97 3.02 2.07 890 
9 30.02 3.21 2.15 481 
10 27.52 3.29 2.05 297 
     
a Excluded from the table are team sizes greater than 10 
 
 
 
 
 
 
Secondly, it should be true that on average solo R&D workers have smaller distances 
than teams of R&D workers.  The reason for this is because solo R&D workers can only 
implement ideas completely within their own area of specialization.  The evidence 
indicates that solo R&D worker distances are on average smaller than the distances for 
teams of R&D workers.   
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Figure 3. Average Total Distance (ATD) and Team Size 1975
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Figure 4. Average Total Distance (ATD) and Team Size 1995
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Technological Distances over Time 
 
Technological distances were constructed to determine if R&D workers were forming 
larger teams because they were struggling to implement larger ideas that were outside 
their own area of expertise.  The time series data for technological distances are 
constructed by taking all the patents granted to U.S. R&D workers for a particular year 
and calculating the average distance for that year of data.  Figures 5 shows average 
annual max distances across the top 4 G-7 countries.  The average maximum distance 
for U.S. R&D workers in 1975 of 2.5 indicates that many patents connected knowledge 
that was within the same category but outside the subcategory.  By 1989 the average 
maximum distance reached 3.0 meaning that many patents connected knowledge that 
was outside their category.  This indicates that patents are making more citations to 
knowledge that is farther away evidence that R&D workers are getting bigger ideas over 
time.  
 
The graphical evidence shows that technological distances are increasing across G-7 
countries too.  The United States is the leader across all G-7 countries with the UK, 
Canada, and France following; Japan, Italy, and Germany (table 3) are lagging.  Again 
this evidence suggests that ideas are getting bigger over time and across countries.  The 
trend is apparent across industrialized countries, although only the average max 
distance is shown the trend is true for both the average annual total distance and the 
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average annual average distance across G-7 countries (suppressed for space 
considerations).   Furthermore, a similar investigation was done across the 4 Asian 
Tigers: Singapore, Hong Kong, South Korea, and Taiwan and the results for these 
countries resemble the trend for Japan; although with substantial volatility.  Among the 4 
Asian Tigers Singapore has the highest technological distance, followed by Hong Kong, 
South Korea, and Taiwan.   
 
 

Figure 5: Average Max Distance for Top 4 G7 Countries
Annual Data by Application Year 1975 - 1995
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Table 3: Descriptive Statistics for Average Maximum Distance (AMD) 

     
Country Mean Std Error Minimum Maximum 

US 2.88 0.21 2.47 3.21 
UK 2.78 0.16 2.40 3.06 
Canada 2.73 0.23 2.24 3.09 
France 2.70 0.15 2.30 2.95 
Japan 2.66 0.12 2.40 2.85 
Germany 2.65 0.14 2.31 2.91 
Italy 2.58 0.18 2.07 2.85 
     
a Sorted descending by Mean. 
     
b Quarterly data for G7 Countries 1975 – 1999 by Grant Year 
 
 
The data presented here indicates that technological distances are increasing in the 
United States and that this increase partially explains the increase in team size 
documented by Jones over the same period; thus, providing a joint reason for increasing 
team size.  In addition, the data reveals a specialization paradox; a priori, one would 
think that solo R&D worker distances should decline over the sample in keeping with the 
hypothesis of increased specialization; however, Tables 1 and 2 indicate that solo R&D 
workers are keeping up (relatively) with team R&D worker distance.  This means that 
solo R&D workers and are conceiving and implementing larger ideas over time.   
 
 

CONCLUSIONS 
 
Increasing knowledge puts an increased learning burden on successive generations of 
R&D workers.  One way to deal with this burden is for R&D workers to increasingly 
specialize and form teams to implement their new ideas.  However, if R&D workers are 
getting bigger ideas over time then larger teams are need too.  This paper uses the 
Olsson model of ideas to measure the sizes of idea for United States patents granted 
from 1975 – 1995.   Preliminary results show that idea size is increasing over time 
signaling that increased specialization only partially explains increasing team size.   
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