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Abstract

There is considerable empirical evidence that energy prices had a large effect on the U.S.
economy between World War II and the 1980s. This paper argues that linkages between manu-
facturing industries amplify the effect of an energy price shock, and help explain the large effect.
In particular, energy intensive industries are important input suppliers to other industries. When
the price of energy increases, energy intensive industries contract, raising materials prices for
other industries. Because of the reduction in materials supply, the downstream industries also
contract, which I refer to as the supply effect. Using data from the Census of Manufactures,
I find that the supply effect accounted for about one half of the sensitivity of value added to
the price of energy. I use plant level Census data to show that the supply effect caused similar
changes in value added per plant as in value added per industry. A price increase caused a small,
though statistically significant, decrease in entry and had no effect on exit. Finally, the supply
effect reduced plant level labor demand.
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1 Introduction

Past research has documented a strong correlation between oil prices and economic activity, both

in individual sectors and at the aggregate level. Davis and Haltiwanger (2001) find that oil shocks

explained much of the variation in manufacturing employment from 1972-1988. Rotemberg and

Woodford (1996) find that a one percent increase in the price of oil caused GDP to decline by

0.25 percent.1 Although some authors have argued that the actual effect may be smaller (e.g.,

Bernanke, Gertler and Watson, 1997), it appears that oil shocks played an important role in

business cycles from World War II at least until the 1980s.2

This result constitutes a puzzle. A simple neoclassical model of the U.S. economy would

suggest that the elasticity of GDP to the price of oil should be similar to the cost share of oil,

which was about 0.04 (see, e.g., Rotemberg and Woodford). Previous research has found a much

larger elasticity.

Economists have proposed many explanations for the large effect, but there is little direct

evidence.3 Davis and Haltiwanger argue that adjustment costs amplify the effect of a price shock

and reduce capital utilization. For example, the 1970s oil shocks increased the demand for small

automobiles. Most manufacturers used equipment designed to produce large vehicles, and could

not adjust the types of inputs they used, which caused capital utilization to decline. Bresnahan

and Ramey (1993) support this argument with data from the automobile industry, but there is

little evidence from other industries.

I provide an alternative explanation for the large effect of oil prices on value added, and

present empirical evidence from across the manufacturing sector. I use a simple model, similar

to Horvath (1998 and 2000), to argue that demand and supply linkages between industries can

amplify an energy price shock.4 I use data from the Census of Manufactures to show that

these mechanisms significantly increase the effect of a shock on industry value added. In the

remainder of the analysis I use plant data to investigate how energy prices affect individual

1Hamilton (1983) was one of the earliest, and most influential, studies that estimated this relationship using
aggregate data. Subsequent work (e.g., Mork, 1989) argued that the effect is asymmetric; a price increase has
a larger effect than a price decrease. More recent research (e.g., Hooker, 1996) has documented a decline in the
effect of a price shock on GDP since the 1980s.

2Some authors have argued that this correlation may be spurious, or that oil prices affected GDP via monetary
policy, particularly in the 1970s and 1980s. For example, Bernanke, Gertler and Watson (1997) argue that after
controlling for changes in monetary policy, oil prices have a very small effect on GDP. Hamilton and Herrera
(2004) have questioned their empirical analysis, concluding that Bernanke, Gertler and Watson understate the
effect of a price shock on GDP.

3Rogoff (2006) summarizes much of the literature. Other proposed explanations include uncertainty
(Bernanke, 1983 and Pindyck and Rotemberg, 1984); irreversable investment (Atketson and Kehoe, 1999); and
the effect of oil prices on monetary policy, noted previously.

4Horvath (1998 and 2000) shows that input-output relationships among industries can amplify a small produc-
tivity shock. Computable general equilibrium models (e.g., Hanson et al., 1993) also account for such linkages,
but they usually provide little insight into the sources of amplification.
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plants and generate the large aggregate effects, i.e., I ask whether energy prices affect entry,

exit or average production per plant. I find that an energy price increase caused a large decline

in average plant production and labor demand, but had a small effect on entry and exit; these

results are consistent with the utilization argument of Davis and Haltiwanger.

More specifically, I focus on three mechanisms by which energy prices can affect industry

level value added. First, the direct effect is the change in value added when an energy price

increase raises energy costs. The direct effect is proportional to the cost share of energy, and

should be small for the average industry.

Second, if an industry uses energy intensive materials, an increase in the price of energy may

cause materials prices to rise. For example, because paper is energy intensive, an energy price

increase causes the price of paper to rise. Publishing relies on paper, so the supply effect would

cause the publishing industry to contract as well.5 I refer to the supply effect as the change in

value added for an industry, due to an energy price-induced change in materials prices. For a

given industry, the supply effect increases with the energy intensity of its materials. The effect

would be large if many industries rely on energy intensive inputs.

It is also possible that demand linkages amplify a price shock. If the output of an industry is

used by energy intensive industries, the demand for its product may fall as the energy intensive

industries contract. The demand effect increases with the average energy intensity of the other

industries that use the industry’s product. The demand effect would be large if energy intensive

industries use materials produced by other industries.

This study estimates the importance of demand and supply linkages both at the industry

and plant levels. I first document the strength of the direct, supply and demand effects in

explaining variation in industry value added. I identify the three effects using cross-industry

variation in input requirements and time series variation in the price of oil. For example, there

is considerable variation in the energy intensity of industries’ materials, which allows me to

estimate the magnitude of the supply effect.

Using Census of Manufactures data from 1963-1982, I find that a one percent increase in the

price of oil caused value added to decline by 0.07 percent for the average industry. This elasticity

is about four times as large as the energy cost share in manufacturing, which is consistent with

previous research. The supply effect accounts for about one half of the response of value added to

a price shock. In other words, when the price of energy rises, industries that use energy intensive

inputs experience a large decrease in value added. The demand effect is much smaller, which is

consistent with supply and demand relationships across industries; energy intensive industries are

5It is possible that an energy price increase causes industries to substitute towards less energy intensive inputs,
though this effect does not appear to be important.
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important input suppliers to other industries, but use few manufacturing materials themselves.

There is very little evidence about how energy prices affect individual plants, in particular,

whether energy prices affect entry, exit or average plant production. In the second part of the

analysis, I use plant level data from the Census of Manufactures to investigate these possibilities.

It appears that oil shocks mainly affected average plant production. The direct and supply effects

caused similar changes in value added per plant as in value added per industry. By comparison,

a price increase caused a small and precisely estimated decrease in entry, and had no effect on

exit.

A reduction in value added should be associated with a reduction in inputs: labor, materials

or energy. I further investigate the plant level response to an energy shock by estimating how

input demands respond to the direct, supply and demand effects. I find that the direct and

supply effects cause large reductions in production worker hours and wages, implying that the

labor demand curve shifts towards the origin.

This paper expands on the work of Lee and Ni (2002). They define an oil-intensive industry

as an industry that uses oil directly, or that uses materials with a large oil cost share. For

example, the petroleum refining industry, which uses oil directly, and the industrial chemicals

industry, which uses oil intensive materials, are both considered to be oil intensive. By estimating

a vector autoregression (VAR) for fourteen roughly two digit manufacturing industries, they

characterize the response over time to an oil shock. They find that a positive oil shock causes

a contraction of oil-intensive industries, and they find large demand effects for some industries,

such as automobiles.

This paper differs in several respects. First, I characterize the cross sectional response to

an oil shock, rather than the dynamic response. Second, I quantify the importance of linkages

between industries across the entire manufacturing sector. Third, I use plant data to investigate

whether the aggregate effect is due to entry, exit or average production per plant.

2 Estimating the Effect of Supply and Demand Linkages

2.1 The Price of Energy, Linkages and Value Added

The model in this section highlights the importance of linkages between industries. The economy

is composed of a set of industries, and each industry has a number of identical plants. There is

one time period.

I partition the industries into two subsets. The first subset, I, consists of industries that

produce intermediate goods used by other industries. The intermediate goods industries do

not use other materials themselves. The second set, J , includes industries that produce final
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goods. These industries demand the products from the first set of industries. Horvath (1998)

uses a similar framework to demonstrate the importance of inter-industry linkages in amplifying

a productivity shock.

I derive the supply curve of plants in final goods industry j. The industry has a fixed number

of price-taking plants; the price of output is exogenous.6 Each plant, n, produces output, Yjn,

from one unit of capital, Ejn units of energy, and Mijn units of intermediate materials from

industry i. The production function is Cobb Douglas:

lnYjn = sEj ln(Ejn) +
X
i∈I

sMij ln(Mijn), (1)

where sEi and s
M
ij are parameters. I assume that all firms in the industry have the same production

function, and that sEi +
P

i∈I s
M
ij < 1. I do not include labor in the production function for

simplicity; the results are similar if labor is modeled as a variable input. In equation (1), capital

is fixed, but the plant can smoothly adjust energy and materials. I relax these, and the Cobb-

Douglas, assumptions in the empirical analysis.

Plants take prices as given and maximize profits by purchasing energy and materials:

max
Ejn,{Mijn}i∈I

pjYjn − pEEjn −
X
i∈I

piMijn −R, (2)

where pj is the output price for industry j (i.e., the price of good j), pE is the price of energy and

R is the cost of capital. The first order conditions for input demands are the standard Cobb-

Douglas equations, and the parameters sEj and sMij are the cost shares of energy and materials.

Using the first order conditions and equation (1), I obtain the following supply curve for each

plant:

lnYjn = −
sEj
rj
ln(PE)−

X
i∈I

sMij
rj
ln(Pi) + kj, (3)

where rj = 1 − sEj −
P

i∈I s
M
ij ; P

E is the real price of energy for industry j, pE/pj; Pi is the

real price of material i, pi/pj; and kj is a constant that depends on parameters. Each plant’s

output is decreasing in real input prices. The elasticity of output with respect to the real price

of energy is proportional to the cost share of energy, sEj . The elasticity of output with respect

to the real price of material i is proportional to the cost share of material i, sMij .

Free entry in the intermediate goods industries determines the price of good i. Because these

industries do not use goods produced by other industries, the price of intermediate good i is

6The perfect competition and exogeneity assumptions simplify the analysis, but are not necessary to obtain
the main results.
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given by:

ln pi = sEi ln(p
E) + ki. (4)

The elasticity of the price of good i to the price of energy is equal to the industry’s cost share

of energy, sEi .

Combining equations (3) and (4) gives the supply curve for final good industry j, in terms

of the real price of energy. To simplify the notation I define the supply elasticity for industry j,

Sj, as: Sj =
P

i s
M
ij s

E
i . The variable is the inner product of the materials cost share for good i

and the energy intensity of the material. The supply curve is given by:

lnYjn = −
1

rj
sEj ln(P

E)− 1

rj
Sj ln(P

E) + kj, (5)

where the constant, kj, has absorbed additional parameters. The equation shows two effects

of the price of energy on output. The first term is the direct effect. Plants in energy intensive

industries have lower output. The second term is the supply effect. Plants that use large amounts

of energy intensive materials have a large value of Sj. These plants have higher materials costs,

reducing output.

Equation (5) shows the effect of the price of energy on gross output per plant. I use equation

(5) and the first order conditions for energy and materials to obtain an expression for value

added, which excludes energy and materials:

lnVjn = B1s
E
j ln(P

E) +B2Sj ln(P
E) + kj, (6)

where B1 and B2 are nonlinear functions of the cost shares, and are constant. This equation is

similar to the output equation, and shows two effects on value added: the direct effect, which is

proportional to the industry’s energy cost share, and the supply effect, which is proportional to

the (weighted) average energy intensity of the industry’s materials.

2.2 Estimation of the Direct, Supply and Demand Effects

Equation (6) characterizes value added per plant, and is the basis for the estimating equation.

Because the number of plants is fixed in the model, industry output is a constant multiple of

output per plant, and there is no demand effect. I add to this model an approximation of

the demand effect that is analogous to the supply effect. In particular, I define the demand

elasticity, Dj, as: Dj =
P

k s
M
jks

E
k . If an industry’s output is used by energy intensive industries,

the demand for that output should be relatively small.

I add the demand effect to obtain the value added of industry j in year t, Vjt:
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lnVjt = β1s
E
j lnP

E
t + β2Sj lnP

E
t + β3Dj lnP

E
t + ιj + τ t + εjt, (7)

where β1, β2 and β3 are parameters, P
E
t is the real price of oil in year t, ιj is an industry specific

intercept and τ t is a year dummy.

Equation (7) is the baseline estimating equation, which I estimate by Ordinary Least Squares.

The dependent variable is log real value added by industry and year. The year dummies control

for aggregate shocks in a particular year. The industry dummies allow each industry to have

a different intercept, absorbing industry-specific production parameters that do not vary over

time, such as capital intensity, location and plant size.

The first three independent variables are the interactions of the price of oil with the direct,

supply and demand elasticities (sEj , Sj, and Dj).7 The variables are computed using cost shares

and input-output relationships constructed from the Census of Manufactures, described in the

next section. The interaction sEj lnP
E
t captures the effect of the price of oil on energy costs.

The variable Sj lnPE
t measures the effect of the price of oil on materials costs, and the third

variable reflects energy price-induced changes in demand. I assume that these independent

variables are uncorrelated with other time-varying variables, such as shocks to labor or capital

demand; consequently, I omit other production inputs as control variables, because they may be

endogenous. The exogeneity assumption is supported by the fact that adding the interactions

of the price of oil with other industry characteristics does not affect the results.

I identify the direct, demand and supply effects using cross sectional variation in cost shares

and time series variation in the price of oil. For example, there is considerable variation across

industries in the energy intensity of their inputs. As a result, the supply effect varies across

industries and over time. For reasons discussed below, I use the cost shares from the initial year

of the sample to construct the variables sEj , Sj and Dj.

The estimates of β1, β2 and β3 quantify the relative importance of the three effects. I

interpret β1s
E as the average direct effect across industries, where sE is the average energy cost

share. Similarly, β2S and β3D are the average supply and demand effects. As I show below,

energy intensive industries were important input suppliers to other industries, but they did not

consume many materials; this pattern suggests that the supply effect should be larger than the

demand effect.

Equation (7) shows the relationship between aggregate (i.e., industry) value added and energy

costs, materials costs and output demand. Any change in industry value added, however, arises

7I use the price of oil in the equation instead of an energy price index because the price of oil is more likely
to be exogenous. The price of oil and other energy prices are highly correlated (Linn, 2006), and I obtain similar
results using an industry by year energy price index.

6



from plant level responses: entry, exit or average production per plant. Furthermore, if plant

output changes, input demands (i.e., labor, energy and materials) must also respond. The second

part of the empirical analysis, described below, investigates the plant level responses.

This section concludes with a discussion of the measurement of the independent variables in

equation (7) and potential omitted variable bias. There are several measurement issues. First,

the estimated direct, supply and demand effects are first order approximations, derived from the

model in section 2.1. I use several alternative measures of the independent variables, described

below, to assess the robustness of the approximations. They allow for potential nonlinear re-

lationships between inputs and output, and account for the fact that input demand elasticities

may differ from one, as implied by the Cobb-Douglas production function. The main results are

similar to the baseline estimates, which suggests that equation (7) is a reasonable approxima-

tion.8

Second, industry classification may introduce measurement error. I compute the variables

in equation (7) by four digit industry and year. Plants in most four digit industries produce

fairly homogeneous products. The degree of homogeneity may vary across industries, however,

and the baseline regression could include cost shares calculated from a diverse set of plants in

a given industry. This does not seem to be a significant source of bias, though, since I obtain

similar results by restricting the analysis to plants that produce products classified in their own

industry.9

Third, there may be measurement error due to changes in cost shares that are uncorrelated

with energy prices. Since energy prices were relatively stable from 1963-1972, changes in cost

shares during this period are probably uncorrelated with energy prices. By omitting the years

1963-1972 from the baseline regression, I would obtain larger estimates if random variation were

a significant source of bias. Both the cost shares and the estimates are quite stable, however,

suggesting that this is not a major concern.

Finally, the estimated effects may include indirect relationships among industries. For ex-

ample, tire production (SIC 3011) uses synthetic rubber (SIC 2822), which requires petroleum

products (SIC 2911). The estimate of β2 accounts for both the effect of rubber prices on tire

production, and the indirect effect of petroleum prices. That is, the empirical estimates of the

three effects account for higher-order relationships between industries.

8The alternative independent variables do not directly address the possibility that input demand elasticities
may not be constant, and may vary with the price of energy. In that case the estimates would be different in
an alternative sample (e.g., post-1982), in which energy prices were different (Frondel and Schmidt, 2006). I
interpret the baseline estimates as characterizing the average effect of an oil price increase on value added during
the sample period.

9This approach addresses possible measurement error due to vertical integration, which would also cause
plants in the same industry to produce different products.
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I now discuss several approaches to address potential omitted variable bias. An important

feature of equation (7) is that I use the 1963 cost shares to calculate the direct, supply and

demand variables. I use the initial cost shares because the cost shares in later years may be

affected by energy prices or omitted variables, such as shocks to labor or capital demand, causing

biased or spurious results.

Price-induced technical change may have affected industries’ cost shares. Linn (2006) docu-

ments considerable technology adoption in the early 1980s. If technical change were correlated

with the initial cost shares, the results would be biased by an omitted variable. To reduce the

likelihood of such bias, I estimate equation (7) for the years 1963-1982. I obtain similar results

if I end the sample in 1977, but I prefer to include the second major oil shock at the end of the

1970s.

One of the main conclusions of the paper is that price-induced increases in materials prices

(i.e., the supply effect) cause value added to decline. I estimate two additional regressions, similar

to equation (7), to provide evidence against the possibility that the supply effect is driven by

an omitted variable. I replace the dependent variable in equation (7) with the materials price

of the industry. If the interpretation of β2 is correct, the variable Sj lnP
E
t should be positively

correlated with the average price of an industry’s materials. This would not likely be the case

if an omitted variable, correlated with the supply effect, were driving the results. In practice, I

find that the variable Sj lnPE
t is positively correlated with materials prices.

Because of data limitations, I cannot measure an external demand effect, from industries

outside of the manufacturing sector and from consumers. The limitation is much smaller for the

supply effect, which should accurately measure the effect of energy prices on materials prices. It

is possible, however, that the omitted demand effect leads to a spurious estimate of the supply

effect. If that were the case, the variable Sj lnP
E
t would be negatively correlated with the

industry’s output price. On the other hand, if Sj lnPE
t measures the supply effect, the variable

would be positively correlated with the price of output. As reported below, I find a positive

correlation, suggesting that the results are not driven by an omitted demand variable.

Finally, some authors (e.g., Hamilton, 1996) have argued that because capital stock adjust-

ment is lumpy, the response of value added to a price shock may be nonlinear and it may not

be immediate. I investigate both of these issues below, and find some evidence for a nonlinear

effect, but most of the effect appears to occur within about a year.
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2.3 Entry and Exit

There are three ways the direct, supply or demand effect could reduce industry level value added:

entry, exit or value added per plant. In the model in section 2.1, the number of plants in the

industry is constant, an assumption I now relax.

I construct two variables to measure the effect of energy prices on entry and exit. The variable

ENjt is the total value added in year t of plants in industry j that entered between the previous

and current years. The variable EXjt is the value added of the plants that exited between the

previous and current years. The entry variable measures the contribution of entry to the change

in total industry value added; the exit variable measures the contribution of exit.

The logs of these variables are the dependent variables in the following two regressions:

lnENjt = δ1s
E
j lnP

E
t + δ2Sj lnP

E
t + δ3Dj lnP

E
t + ιj + τ t + ηjt, (8)

lnEXjt = γ1s
E
j lnP

E
t + γ2Sj lnP

E
t + γ3Dj lnP

E
t + ιj + τ t + νjt, (9)

where {δ1, δ2, δ3} and {γ1, γ2, γ3} are parameters to be estimated. Equations (8) and (9) have the
same independent variables as equation (7). The three parameters in each equation correspond

to the direct, supply and demand effects of the price of oil on entry and exit. Multiplying the

parameters by the appropriate cost shares yields elasticities; for example, a one percent increase

in the price of oil causes the value added of entrants to rise by δ1sE percent, via the direct effect.

To interpret these elasticities, however, the estimates must be scaled by the share of entry and

exit in value added. The value added of entering and exiting plants is about 10 percent of total

value added in the main sample. Thus, if the estimates of δ1, δ2 and δ3 imply that a one percent

increase in the price of oil causes a 0.1 percent increase in the value added of exiting plants, this

would correspond to a 0.01 percent decrease in total value added for the average industry.

2.4 Plant Value Added and Input Demands

An energy price shock could also affect average value added per plant. I estimate two types of

plant level regressions. First, I estimate an equation similar to equation (7), where the sample

includes a balanced panel of plants from 1963-1982. The dependent variable is log value added

by plant and year, Vnt. The independent variables are the same as in equation (7), replacing the

industry dummies with plant dummies:

lnVnt = λ1s
E
j lnP

E
t + λ2Sj lnP

E
t + λ3Dj lnP

E
t + νn + τ t + ωnt, (10)

9



where νn is a plant fixed effect. The coefficients {λ1, λ2, λ3} are the estimates of the three effects
on average value added per plant. These coefficients and the coefficients in equation (7) are

directly comparable. A similarity would indicate that most of the effect of oil prices on value

added occurs via average production per plant, rather than entry or exit. Note that because of

the plant fixed effects in this equation, I do not include other control variables that are commonly

used in plant level regressions, such as size, location, industry or ownership type (see, e.g., Dunne

et al., 1989).

Equation (10) shows the relationship between value added and energy costs, materials costs

and demand. In order for these effects to reduce value added, they must also reduce input

demands. In the second type of plant level regression, I investigate the response of labor, energy

and materials to the three effects.

As mentioned above, it is possible that input demands and value added do not respond

immediately to a price shock, and that the response may be nonlinear. These effects would

cause both the plant and industry level results to be biased. In practice, however, the plant level

results are similar to the industry level analysis. It appears that input demands respond within

about a year and there is limited evidence for a nonlinear response, but the importance of the

supply effect is robust.

3 Data and Variable Construction

3.1 Industry Value Added and Independent Variables

The data sources are the Census of Manufactures (CM), the Manufacturing Productivity Data-

base (MPD) and the Department of Energy (DOE). I estimate equation (7) using a balanced

panel of 427 industries. The dependent variable is log real value added by industry and year

(1963 and every five years from 1967-1982), constructed from plant data in the CM. A plant’s

nominal value added is defined as total shipments, net of energy and materials expenditures. I

aggregate across plants to calculate nominal value by four digit industry and year.10 Real value

added equals nominal value added divided by an industry specific value added deflator.11

The variable PE
t is the real price of oil in year t. The nominal oil price is the refiner acquisition

cost of imported oil, obtained from the DOE.12 The DOE used several surveys to collect the data

from refineries, and the price is a national average. I use the imported price, which is plausibly

10As is customary with using plant data from the CM, I omit administrative records plants, for which most
variables are imputed.
11I compute the value added deflator using industry specific gross shipments and materials deflators, and the

Tornqvist approximation. I use the deflators in the MPD.
12The data is available from 1968-1997. I assume that the nominal price was constant from 1963-1968. Other

measures of oil prices support this assumption. For example, the domestic first purchase price of crude oil
increased by less than 2 percent over this time period.
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exogenous to the U.S. economy for this time period (see Rotemberg and Woodford). I use an

aggregate value added deflator for the manufacturing sector to calculate the real price of oil.13

The 1963 CM is the other data source for the independent variables. The energy cost share

of each industry is the ratio of energy expenditure to shipments (using the same sample of plants

as the value added calculation).14

I use the materials file in the 1963 CM to compute materials cost shares. The file contains

detailed information about materials use, including each plant’s expenditure by six digit product

code. Using the same plants from the value added calculation, I compute the variableMij, which

is the expenditure on good i by plants in industry j. The variable is aggregated across industries

and products to the four digit level. I divide Mij by the total output of industry j in 1963 to

obtain the cost share of material i, sMij .

I compute the supply and demand variables in equation (7) by matching the energy cost share

of industry i, sEi , with the corresponding cost share of material i in the output of industry j,

sMij .
15 A few industries, such as ready-mix concrete (SIC 3273) primarily use one input (cement,

SIC 3241), but most four digit industries use materials from multiple manufacturing industries.16

I check the robustness of the results by using four alternative measures of the independent

variables. First, I use the energy cost share of the good that is the most important input to the

industry. To compute the other three measures for industry j, I construct the set {Mij}Ii=1, where
Mij is expenditure of industry j on good i. I select the five industries with the largest values

of Mij for industry j.17 I compute three statistics: the mean, median and the maximum energy

cost share of the five industries. I calculate the corresponding demand measures analogously.

Table 1 reports summary statistics. The first column of Panel A shows that the mean energy

cost share is small, 0.015; the direct effect of an energy price shock should be relatively small.

The second and third columns show that energy intensive industries are important suppliers

13This specification is appropriate if the price of oil follows a random walk. The data supports this assumption
during the sample period. I obtain similar results if I detrend the price of oil using an AR(2) specification instead
of taking first differences.
14I use output, rather than costs, to compute the cost shares because there is not suitable data to measure

capital costs at the plant or four digit industry level.
15I match the energy cost share, sEj , with the materials share of good j. Note that s

E
j is the cost share of plants

in industry j, which is not necessarily equal to the cost share required to produce good j. This could create
measurement error if the energy cost share of industry j is not equal to the cost share of producing good j, for
example, if plants produce multiple goods. However, most plants in a given industry primarily produce products
classified in the same industry, and in practice, the energy cost share should accurately measure the importance
of energy in producing good j. I obtain similar results if I construct the independent variables using plants that
produce products classified in their own industry, suggesting this is not a major concern (see Table 3).
16The coding of the industries and materials is not exactly the same, and in some cases the materials codes

do not have a matching four digit industry code. In practice, I use the energy cost share of the least aggregated
matching industry. For example, if I can match the material code to an industry code by the first three digits,
I use the average energy cost share of plants in the corresponding three digit industry. Unfortunately, it is not
possible to combine input-output tables from the Bureau of Economic Analysis to construct the independent
variables.
17In the sample, the five most important materials comprise about 95 percent of total materials costs.
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to other industries, but use fewmaterials from other manufacturing industries. For each industry,

I compute the fraction of output used as inputs by other manufacturing industries. The second

column reports the correlation between this variable and the industry’s energy cost share. This

correlation is positive, 0.14, meaning that the output of energy intensive industries is more likely

to be used as an input by other industries. For the third column I compute the correlation

between an industry’s energy cost share with the cost share of manufacturing materials. The

correlation is negative, -0.18, which means that energy intensive industries use fewmanufacturing

materials. These patterns suggest that the supply effect should be larger than the demand effect.

Panel B reports the five measures of the supply and demand elasticities. The first row shows

the mean across industries of the baseline supply and demand elasticities, Sj and Dj, with

standard deviations in parentheses. The supply elasticity is larger than the demand elasticity,

and there is considerable variation in both cases. The baseline supply elasticity is 0.0062 with

a standard deviation of 0.0071, while the baseline demand measure is 0.0026 with standard

deviation 0.0073 (note that the numbers in the table have been multiplied by 10 for clarity).

Recalling the definitions of Sj and Dj, this pattern reflects the correlations reported in Panel A.

The alternative measures of the supply and demand effects in Panel B show the same pattern.

For example, the energy share of the primary industry (i.e., the most important material) is larger

than the average energy cost share. Thus, energy intensive industries are more likely to be the

primary input supplier. In comparison, the energy share of the most important demanding

industry is smaller than the average energy intensity.

3.2 Entry, Exit and Plant Value Added Variables

The entry and exit equations ((8) and (9)) contain the same independent variables as equation

(7). I measure the dependent variables, log entry and exit by industry and year, using plant

identifiers that link observations over time.18 An entrant in year t is a plant that did not appear

in the previous Census. For each industry and year I calculate the total value added of plants

that entered between the previous and current Census years. I divide entrants’ value added by

the value added deflator in the current year to obtain the dependent variable in equation (8),

ENjt.

An exiting plant appeared in the previous Census but not in year t. I calculate EXjt as the

total value added of plants that exit between the previous and current Census years, divided by

the value added deflator from the previous Census.

Finally, the plant level regression, equation (10), is estimated using a balanced panel of

18More precisely, the plant identifiers are in the Longitudinal Research Database, which links the Census of
Manufactures over time.
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39,485 plants that report positive value added each Census year from 1963-1982. The dependent

variable is log real value added by plant and year, equal to the log of nominal value added divided

by the corresponding industry’s value added deflator. I also calculate plant level measures of

production worker hours, production worker real hourly wage, real energy consumption and

materials use, and investment.19

4 Effect of a Price Shock on Industry Value Added

4.1 Baseline Estimates

Table 2 reports the estimates of the direct, supply and demand effects in equation (7). The

sample includes a balanced panel of 427 four-digit industries, with observations each Census year

from 1963-1982. The regression is estimated by OLS and all variables are in first differences.

The dependent variable is log real value added by four digit industry and year. The independent

variables are a full set of year dummies and the direct, supply and demand variables (taking

first differences eliminates the industry dummies in equation (7)). The independent variables

are computed using energy and materials costs shares in 1963.

Column 1 shows the baseline estimates.20 Standard errors are in parentheses, clustered by

industry. The estimate of β1is -2.19 with standard error 0.58, which is significant at the 1 percent

level. The mean cost share is 0.015, so a one percent increase in the price of oil caused value

added to decrease by 0.03 percent in the average industry, holding materials prices and output

demand constant.21

The estimate of β2 is -4.89 with standard error 2.49, which is significant at the 5 percent

level. The demand estimate, β3, is much smaller, -0.68, and is not significant. The last two rows

of the table quantify the relative importance of the three effects. The total effect of the price

of oil on value added includes all three effects, using the reported coefficients and the sample

means of the corresponding variables.22 From 1963-1982, a one percent increase in the price of

oil caused value added to fall by 0.07 percent, which is about four times larger than the average

19I use production workers instead of other labor categories because of data availability. The hourly wage
is defined as total production worker hours divided by total production worker wages and the price of output.
Real energy and materials use are calculated using reported expenditures and industry level deflators from the
MPD. Investment is defined as the change in log machines, i.e., as the percent growth in the capital stock. This
definition accounts for plants with zero investment (see, e.g., Greenstone, 2002).
20The low R2 in these regressions is due to the first difference specification. The results are qualitatively

similar and the R2 is much larger, close to 0.9, using industry fixed effects instead of taking first differences. The
estimates are also somewhat larger with first differences, but there may be some drift in the industry-specific
constant terms. I focus on the first differenced estimates because they are more robust.
21The supply and demand effects for industry j are computed by taking the inner product over all industries

other than j. Some industries contain plants that use materials classified in the same industry. Consequently, β1
measures the direct effect, plus the supply and demand effects from within the industry. However, these materials
cost shares are typically small, and this should not greatly affect the estimate of β1.
22I use the arithmetic means of the elasticity measures to calculate the total and supply effects. I obtain similar

results if I use means weighted by value added.
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energy cost share. It is difficult to compare this result with VAR estimates (e.g., Lee and Ni,

2002), but the magnitude reported in this paper appears to be broadly consistent.

The last row shows that the supply effect caused value added to decline by 0.03 percent when

the price of oil increased by 1 percent. The supply effect explains about one half of the total

effect of a price shock, which is consistent with the fact that energy intensive industries were

important input suppliers.

4.2 Measurement of the Independent Variables

I discuss several approaches to check the robustness of the supply and demand elasticities, Sj
and Dj, and to assess whether measurement error is biasing the estimated coefficients. The

results are fairly similar using different measures of the independent variables, and measurement

error does not appear to be a significant source of bias.

Recall that the independent variables, sEj , Sj and Dj, approximate the effect of the price of

energy on energy costs, materials costs and demand. I consider column 1 of Table 2 to be the

baseline, and I check the robustness of the approximations by using four alternative measures of

materials costs and demand, in place of Sj and Dj. Column 2 uses the energy cost share of the

industry that is the largest supplier of intermediate materials, or the largest user of the industry’s

output. Column 3 uses the mean energy cost share of the five most important supplying and

demanding industries. Column 4 uses the median energy cost share of the five industries and

column 5 uses the largest energy cost share of the five industries.

The estimates of β1 in columns 2-5 are between negative one and negative two, and are sta-

tistically significant. The different magnitudes of β2 partially reflect the different normalizations

of the independent variables. The estimates of the supply effect, reported at the bottom of the

table, vary somewhat, but in all specifications the supply effect explains a substantial share of

the total effect. The demand effect is not significant in any of the specifications.

I next argue that measurement error, arising from fluctuations in cost shares that are uncor-

related with energy prices, probably does not bias the estimates. Energy and materials prices

were relatively stable from 1963-1972. Consequently, changes in energy or materials cost shares

during this period would likely be due to measurement error or other random sources of variation,

which are uncorrelated with prices.

Figure 1 shows that such fluctuations were relatively small. In Figure 1 I plot the percent

change of each industry’s energy cost share between 1963 and 1972 versus the initial value in

1963.23 The figure shows that there was little change in the energy cost share, and that the

23Due to confidentiality concerns, I cannot report the data points for all 427 industries in the sample. Figure
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change was not correlated with the initial level. The coefficient in a univariate regression of the

percent change on the initial cost share is small and is not significantly different from zero.

The results in column 1 of Table 3 support this conclusion. If random variation of the cost

shares were biasing the results, I would obtain different estimates by omitting the years 1963

and 1967 from the estimation model. I obtain similar results using data from 1972-1982, which

suggests that measurement error is not a significant concern.

Because an industry may include plants that produce a heterogenous mix of products, indus-

try classification is another potential source of measurement error. For example, many sausage

plants (SIC 2013) produce products of the meat packing industry (SIC 2011), possibly creating

measurement error for the independent variables of either industry. As a specification check I

compute the direct, supply and demand measures using plants that produce one product (i.e.,

plants for which at least 95 percent of output includes a product from the same four digit

industry). The results in column 2 are similar to the baseline.

By using energy cost shares in the baseline specification, I am assuming that oil prices are

highly correlated with other energy prices. If they are not, the estimated effect of an energy

price shock could be biased. Consequently, it may be more appropriate to use oil and natural

gas cost shares in place of the energy shares. I compute the oil/gas shares by four digit industry

from the 1977 Annual Survey of Manufacturers (ASM) Fuel Supplement.24 The direct effect in

column 3 is close to the baseline estimate. The estimate of β2 is larger, but this is due to the

different scales of the supply measures. The last row of the table shows that the supply effect is

similar to the baseline. The demand effect is larger than the baseline, and is significant at the

5 percent level. This suggests that measurement error may bias the demand estimate towards

zero in the baseline specification. The demand effect is much smaller than the supply effect in

column 3, however, supporting the conclusion that the supply effect was more important than

the demand effect in U.S. manufacturing.

4.3 Potential Omitted Variables

This section discusses several specifications, which show that omitted variables are unlikely to be

causing biased or spurious estimates of the supply effect. I first estimate the following equation:

lnPM
jt = φ1s

E
j lnP

E
t + φ2Sj lnP

E
t + φ3Dj lnP

E
t + ιj + τ t + εjt. (11)

1 includes 164 industries with at least 25 firms. The subsample of industries that meet the disclosure criteria is
representative; the pattern is quite similar using the full sample of industries.
24I use the oil/gas cost share because natural gas and oil prices are highly correlated and because manufacturing

industries use much more natural gas than oil (Linn, 2006). The necessary data is not available to compute oil/gas
cost shares in 1963.
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The dependent variable is the log average materials price for industry j in year t, and the

independent variables are the same as in equation (7). In equation (7) the parameter β2 captures

the effect of materials prices on value added. If this interpretation is correct, in equation (11)

the coefficient on the variable Sj lnPE
t , φ2, should be positive. On the other hand, the coefficient

may be zero or negative if an omitted variable were correlated with Sj lnP
E
t and were driving

the results. The estimate of φ2 is 3.55 with standard error 0.57, supporting the interpretation

of β2 as measuring the importance of oil price-induced changes in materials prices.

Due to data limitations, there is an omitted demand effect. If the omitted variable were

causing a spurious estimate of the supply effect, I would likely find a negative correlation between

Sj lnP
E
t and the price of output. I re-estimate equation (11), using the average log output price

for industry j in year t as the dependent variable. The results provide evidence against a spurious

supply effect. The estimate of φ2 is positive, 3.10, with standard error 1.59.

Transportation costs represent a potential source of omitted variable bias. Manufacturing

industries rely on a variety of energy intensive forms of transportation. If industries with a high

measure of Sj or Dj also have high transportation costs, the estimates could be biased.

I use the 1993 Commodity Flow Survey to construct two transportation cost variables.25 I

first compute a demand measure of transportation costs. Industries that ship their output over

large distances have a relatively high average shipping cost. An oil price increase would raise

shipping costs and reduce the demand for the industry’s output. As a proxy for shipping costs,

I compute the number of ton-miles of goods shipped via trucking for each industry, divided by

the industry’s output.26

The second transportation measure is the supply effect of transportation costs. During a

price shock, industries that rely on materials shipped by trucks would experience a large change

in the delivered price of those materials. For a given industry, I compute the weighted average

shipping cost of its inputs, using the corresponding input cost shares (sMij ) as weights. I add to

equation (7) the interactions of both transportation variables with the log real price of oil.

Column 4 in Table 3 shows that including these variables does not affect the results. The

coefficients on the transportation variables (not reported) are negative, indicating that an energy

price increase raises transportation costs and reduces value added.27 The estimates reported in

25The data are available at the three digit level. It would be preferable to use transportation data from the
beginning of the sample or before the major oil price shocks, but the data is not available. The 1993 Commodity
Flow Survey can be found at: www.census.gov/prod/2/trans/93comflo/. The Census of Manufactures does not
contain data sufficient for measuring transportation costs.
26I focus on trucking because it is a relatively oil intensive form of transportation. I obtain similar results using

other measures of transportation costs.
27I do not report the estimates of the transportation variables in the text because they are probably measured

with error; nonetheless, they should be correlated with actual transportation costs, and be sufficient for addressing
concerns about omitted variable bias. The estimate of the supply transportation measure is large and significant,
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Table 3 are close to the baseline, suggesting that the independent variables are not highly

correlated with transportation costs.

The baseline specification assumes that all inputs except capital adjust to an oil shock within

one year, and that the relationship between the log price of oil and log value added is linear.

The first assumption may not hold in practice, for example, if an oil shock occurs near the end

of the year. I can investigate this possibility by using the one year lag oil price in place of the

current price. It is difficult to reach a strong conclusion with this specification, however, because

the current and lagged are highly correlated. Nevertheless, I would be concerned if the estimates

with the one year lag are much larger than the baseline. In column 5, they are quite similar to

the baseline.28 The estimates are smaller using the two year lag price (not reported), so there is

no evidence that the effect of an oil shock is delayed by more than one year.

Furthermore, lumpy investment may cause the effects of the price of oil to be nonlinear. To

address this issue, I calculate the 90th percentile of the direct, supply and demand elasticities

(sEj , Sj, and Dj). I construct three indicator variables, equal to one if the industry is above the

90th percentile for the particular measure. I add to the baseline specification the interaction of

these indicator variables with the price of oil (not reported). This specification allows industries

that use large amounts of energy intensive materials, for example, to have a different response

to an oil shock than other industries. These interactions are positive, and the estimates of β1
and β2 are somewhat larger than the baseline; for example, the estimate of β2 is -8.57. These

estimates provide some evidence that the relationship between the price of oil and value added

may be nonlinear. The estimated total effect and supply effects are -0.07 and -0.04, as in the

baseline specification, however, and the conclusion that the supply effect explains much of the

response of value added is robust; I continue to use the linear specification as an approximation.

In the baseline specification I assume that the price of oil and the industry’s 1963 cost shares

are uncorrelated with other shocks to input demands (e.g., labor-biased technical change). Such

shocks would likely be correlated with industry characteristics, such as labor or capital cost

shares. Columns 6 and 7 include the interactions of the price of oil with the industry’s initial

labor cost share and capital cost share.29 The estimates are similar to the baseline, though the

supply effect is somewhat smaller in column 7. The same conclusion holds when including other

industry characteristics, such as plant size and region (not reported).

while the demand measure is also negative, but is smaller and insignificant.
28The correlation between the current and lag prices prevents me from estimating a specification with both

prices. Consequently, it is difficult to compare these results with previous VAR estimates, which often show that
the peak response follows about one year after the initial shock.
29As noted earlier, I cannot directly measure capital costs. I define the capital cost share as 1− sLj − sEj − sMj ,

where sLj and sMj are the cost shares of labor and materials for industry j.
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As a specification check, I replace the dependent variable with log gross output by industry

and year, which may be a more appropriate measure of industry level output. In column 8,

the magnitudes are similar to the baseline. I prefer the value added specification because the

primary motivation of the paper is to explain the response of total value added to an oil shock.

Finally, because of data limitations, the regressions include observations from Census years,

which are roughly every five years. I do not use ASM data to estimate value added in the

intervening years for two reasons. First, the estimates would be less precise than the Census

measures. Second, it is not possible to measure entry, exit or value added per plant for each

year from 1963-1982. Consequently, I focus on the industry level results from Census years for

comparability with the plant results, which are discussed below. The drawback to this approach

is that taking first differences over the five year intervals may mean that the baseline estimates

include medium-term effects of the price of oil on value added, in addition to short term effects.

In the last two columns of Table 3 I use value added data from the MPD to show that this does

not appear to be the case. To compare with the results using annual data, in column 9 I use the

MPD data from Census years. The results are quite similar to the baseline. In column 10 I use

data from the MPD for every year from 1963-1982, and the results are nearly identical to those

in column 9.30

5 Plant Level Results

5.1 Effect of a Price Shock on Entry and Exit

Changes in industry level value added could be due to entry, exit or to changes in average value

added per plant. I first show that the price of oil had little effect on entry and exit.

Tables 4 and 5 report the estimates of equations (8) and (9), which characterize the di-

rect, supply and demand effects on entry and exit. The dependent variables are the log real

value added of plants entering or exiting between the previous and current Census years. The

regressions include the same independent variables as the corresponding columns in Table 2.

The coefficients capture the importance of the three effects on entry and exit. To interpret

the magnitudes, it is necessary to account for the fact that the value added of entering and

exiting plants is about 10 percent of total industry value added. Thus, if the entire effect of oil

prices on value added were due to entry and exit, the coefficients in Tables 4 and 5 would be

about 10 (1/0.1) times larger than the coefficients in Table 2. The reported total and supply

effects at the bottom of Tables 4 and 5 include this correction.
30Because there is much less annual variation in the price of oil, I do not estimate equation (7) by taking first

differences, but instead I include industry fixed effects. As noted earlier, the fixed effects results are similar to
those in Table 2 for the baseline sample, so this should not be a major concern.
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Table 4 shows that entry does not explain much of the effect of oil prices on value added. The

direct and supply estimates are negative and significant in column 1. The total effect implies

that a one percent price increase caused industry value added to fall by 0.015 percent due to the

reduction in entry. This is about 20 percent of the total effect on industry value added reported

in Table 2; the standard errors imply that I can reject the hypothesis of large entry effects.

There is no evidence in Table 5 that a price increase caused an increase in exit. As the last

two rows show, the data rejects the hypothesis of a large effect of exit on industry value added.31

5.2 Effect of a Price Shock on Average Value Added Per Plant

Table 6 reports the estimates of equation (10) using plant level data. The results suggest that

oil shocks had large effects on average value added per plant.

The independent variables are the same as in Table 2, but observations are at the plant level.

The sample includes a balanced panel of plants that appear in every Census from 1963-1982.

The dependent variable is log real value added. The coefficients are directly comparable to Table

2; a close similarity would suggest that the price of oil mainly affected average output per plant.

The estimates are, in fact, similar to the results in Table 2. In column 1 the direct and

supply effects are negative and significant. The total effect of a one percent price increase on

value added is about -0.07, and the supply effect is -0.04. The corresponding estimates in Table

2 were -0.07 and -0.03, suggesting that most of the effect of a price shock on total value added

is due to changes in plant level production. The other measures for Sj and Dj in Table 6 yield

the same conclusion.32

Because I estimate equation (10) using first differences, I do not include plant-specific char-

acteristics that do not vary over time, e.g. age or initial size. It is possible, however, that there

were plant specific shocks during the sample period that were correlated with the independent

variables. To address this concern, I have estimated a number of alternative specifications to

equation (10), analogous to those shown in Table 3. I do not report them due to space consid-

erations, but the results are robust to interacting other plant-level characteristics (e.g., capital

intensity) with the price of energy, using gross output as the dependent variable, using the lag

price of oil or allowing for nonlinear effects.

The results suggest that an increase in the price of oil caused average value added per plant

31The results are similar if I use the lagged price of oil instead of the current price, which allows for delayed
entry or exit responses.
32As another check for measurement error, I construct the direct and supply variables at the plant level (it is

not possible to construct a plant-specific demand variable). For the direct effect, I use the plant’s energy cost
share in 1963. I measure the supply variable similarly to equation (7), except that I use the plant’s materials
cost shares in 1963, instead of the cost shares of the corresponding industry. I obtain smaller estimates than the
baseline, though the supply effect explains a comparable fraction of the total variation of value added.
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to decline because of the direct and supply effects. In contrast, oil shocks had little effect on

entry and exit. This conclusion is consistent with other authors (e.g., Davis and Haltiwanger,

2001), who have argued that an oil price increase causes capital utilization to decline.33

5.3 Effect of a Price Shock on Input Demands

Finally, I estimate the response of labor, energy and materials demands to an oil shock. I

estimate an equation similar to (10), using four alternative dependent variables: log production

worker hours, log production worker hourly wage, log energy use and log materials use. Table

7 reports the results of these specifications, showing estimates from using either the current or

one year lag oil price; the latter allows for a delayed response of input demands to an oil shock.

The results show that the direct and supply effects cause input use and the real wage to

decline. It appears that plants respond to a price shock within one year, as the effects are at

least as large using the current price.34

6 Conclusion

This paper quantifies the importance of demand and supply linkages between industries, arguing

that supply linkages in particular can help explain the large effect of oil prices on value added.

Energy intensive manufacturing industries are major input suppliers to other industries. Using

data from 1963-1982, I find that an oil price increase caused energy intensive industries to

contract, raising materials prices and causing other industries to contract. This supply effect

was economically and statistically significant in explaining variation in industry value added. In

contrast, I find little evidence that demand shocks from within the U.S. manufacturing sector

played an important role.

Oil shocks primarily affected average production per plant, rather than entry and exit. The

direct and supply effects caused similar changes in value added per plant as value added per

industry. There is no evidence that entry and exit responded by economically significant amounts

to a price shock. A price increase caused a small, though statistically significant, decrease in

entry, and had no effect on exit. Finally, the direct and supply effects appear to have reduced

input demands and wages. These results are consistent with the argument that energy prices

have large effects on capital utilization, but additional research is needed in this area.

33Because of data limitations there is little direct empirical work on capital utilization. Barsky and Killian
(2002) argue that the existing evidence implies a small effect of energy prices on utilization, because capital rental
rates are not correlated with oil prices.
34I have also investigated the response of investment to a price shock. The LRD investment data is fairly

limited, and I do not report the results, but there is some evidence that the direct and supply effects cause a
reduction in investment.
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Figure 1: Percent Change of Energy Cost Share vs. Initial Cost 
Share, 1963 - 1972
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Notes: The figure plots the percent change in energy cost share from 1963-1972 against the energy cost share 
in 1963 for each industry, computed from the Census of Manufactures (see text). The line shows the predicted 
values from an OLS regression of the percent change on the initial cost share.



(1) (3)

Energy Cost Share Correlation of Energy Share 
with Materials Share

0.015
(0.020)

(2)

Panel A

energy cost share of the five industries accounting for the largest shares in materials costs. The supply elasticity 
median energy share is the median energy cost share of the five industries. The supply elasticity maximimum 
energy share is the largest energy cost share of the same five industries. The demand elasticities in Panel B are 
computed similarly, using the share of the industry's output in the total cost of the demanding industry. See text 
for details.

Notes: All variables are computed from plant data from the 1963 Census of Manufactures, for the sample of 427 
four digit industries. Columns 2 and 3 of Panel A report correlations across industries. All other cells report 
means across industries, with standard devations in parentheses. Energy cost share is the ratio of total energy 
expenditure to total shipments by industry. Column 1 of Panel A reports the energy cost share. Use as material 
is the share of an industry's output used as inputs by other manufacturing industries. The second column in 
Panel A reports the correlation of an industry's energy cost share with the industry's use as material. Materials 
share is the share of manufacturing inputs in total costs. The third column in Panel A reports the correlation of 
this variable with the industry's energy cost share. In Panel B, the supply elasticity inner product using energy 
share is the inner product of the materials share of the supplying industry with the corresponding energy cost 
share, multiplied by 10. The supply elasticity energy share of primary industry is the energy cost share of the 
supplying industry with the largest share in materials costs. The supply elasticity mean energy share is the mean
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Table 1:

Summary Statistics: Energy Cost Share and Supply and Demand Elasticities

Maximum Energy 
Share

Correlation of Energy Share 
with Use as Material

0.144

Panel B

Inner Product Using 
Energy Share (x 10)

Energy Share of 
Primary Industry

Mean Energy Share

Supply Elasticity

Median Energy 
Share

Demand Elasticity

0.062
(0.071)

0.032
(0.015)

0.028
(0.015) (0.010)

(0.015)
0.011

0.060

(0.073)

(0.031) (0.035)
0.030

0.011



(1) (2) (3) (4) (5)

Inner Product 
Using Energy 

Share

Energy Share of 
Primary Industry

Mean Energy 
Share

Median Energy 
Share

Maximum Energy 
Share

-2.19 -1.98 -1.45 -1.43 -1.92
(0.58) (0.55) (0.59) (0.63) (0.57)

-4.89 -1.03 -2.36 -3.16 -0.34
(2.49) (0.67) (1.27) (1.29) (0.53)

-0.68 0.34 -0.06 0.56 -0.21
(1.51) (0.84) (1.25) (1.54) (0.47)

R2 0.04 0.03 0.04 0.04 0.03

Number of 
Observations 1,708 1,708 1,708 1,708 1,708

-0.066 -0.063 -0.098 -0.103 -0.056
(0.020) (0.025) (0.040) (0.036) (0.032)

-0.030 -0.037 -0.074 -0.087 -0.021
(0.015) (0.024) (0.040) (0.036) (0.032)

reports the percent change in value added due to the supply effect, using the estimate of β2 and the mean of the 
supply elasticity.

Notes: The table reports the results of estimating equation (7) by Ordinary Least Squares (OLS). Standard errors 
are in parentheses, clustered by industry. The sample includes a balanced panel of 427 four digit industries. All 
regressions include year dummies and all variables are in first differences. All deflators are constructed from the 
Manufacturing Productivity Database (MPD). The dependent variable is the log of real value added by four digit 
industry and year, computed from the Census of Manufactures and the MPD. The log real price of oil is the log of 
the imported price of oil, obtained from the Department of Energy, divided by the sector-wide value added 
deflator. Energy cost share is defined as in Table 1. All columns include the interaction of the energy cost share 
and the log real price of oil. Regressions use the supply and demand elasticities indicated in the column 
headings, computed as in Table 1. The regressions include the interactions of these variables with the log real 
price of oil. Total effect is the percent change in real value added caused by a one percent increase in the real 
price of oil, using the estimated coefficients and the mean values of the corresponding elasticities. Supply effect

Supply Effect

Table 2:

Effect of an Energy Price Shock on Industry Value Added, 1963-1982

Dependent Variable: Log Real Value Added

Total Effect

Supply Elasticity x 
Oil Price

Direct Elasticity x 
Oil Price

Demand Elasticity 
x Oil Price



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Sample 
Includes 

1972-1982

Indep Vars 
Use Single 

Product 
Plants

Indep Vars 
Use Oil/Gas 

Share 

Control For 
Transport 

Costs

Use One 
Year Lag Oil 

Price

Control for 
Labor Cost 

Share

Control for 
Capital Cost 

Share

Dep Var Is 
Log Gross 

Output

MPD Value 
Added For 

Census 
Years

MPD Value 
Added For 
All Years

-2.26 -2.02 -2.48 -1.88 -2.21 -2.25 -2.43 -1.66 -3.20 -2.29
(0.58) (0.52) (0.66) (0.78) (0.55) (0.60) (0.57) (0.53) (0.82) (0.65)

-5.30 -4.68 -9.75 -4.03 -5.74 -4.57 -3.51 -5.07 -6.12 -4.16
(2.47) (2.13) (1.96) (2.52) (2.33) (2.48) (2.57) (1.95) (2.76) (2.52)

-0.69 -0.50 -3.71 0.33 -0.58 0.12 -0.26 0.65 -1.67 -0.91
(1.52) (1.51) (1.87) (1.71) (1.37) (1.63) (1.48) (1.35) (1.59) (1.56)

R2 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.91 0.92

Number of 
Observations 810 1,708 1,708 1,556 1,708 1,708 1,708 1,708 8,540

-0.070 -0.068 -0.055 -0.053 -0.071 -0.063 -0.060 -0.055 -0.092 -0.064
(0.020) (0.019) (0.010) (0.020) (0.019) (0.020) (0.020) (0.016) (0.023) (0.020)

-0.033 -0.030 -0.023 -0.025 -0.036 -0.028 -0.022 -0.032 -0.038 -0.026
(0.015) (0.014) (0.005) (0.016) (0.014) (0.015) (0.016) (0.012) (0.017) (0.016)

variables. Column 4 includes the interaction of the log price of oil with the supply and demand transportation measures. Column 6 includes the 
interaction of the industry's 1963 labor cost share with the price of oil and column 7 includes the interaction of the industry's 1963 capital cost share with 
the price of oil. The total and supply effects are computed as in Table 2. See text for details.

Table 3:

Alternative Specifications

Notes: Standard errors are in parentheses, clustered by industry. All regressions are estimated by OLS and the dependent variable is log real value 
added, except in column 8 where it is log gross output. In columns 1-8 all variables are in first differences. All columns include a full set of year 
dummies, and columns 9 and 10 include industry fixed effects. The sample of industries is the same as in Table 2 for columns 2-8. Column 1 includes 
observations from 1972-1982. Column 9 uses value added by industry from the MPD, and includes a balanced panel of industries for the same years 
as in Table 2. Column 10 uses observations from the MPD for each year from 1963 - 1982. Energy cost share, upstream share, downstream share and 
real price of oil variables are constructed as in column 1 of Table 2 for columns 1, 4 and 6-10. In column 2 the independent variables are constructed 
from plants that produce products classified in their primary industry. Column 3 uses oil/gas cost shares computed from the 1977 Annual Survey of 
Manufactures in place of energy cost shares. Column 5 uses the one year lag price of oil in place of the current price of oil to construct the independent

Direct Elasticity x 
Oil Price

Supply Elasticity x 
Oil Price

Demand Elasticity 
x Oil Price

Total Effect

Supply Effect



(1) (2) (3) (4) (5)

Inner Product 
Using Energy 

Share

Energy Share of 
Primary Industry

Mean Energy 
Share

Median Energy 
Share

Maximum Energy 
Share

-2.18 -1.90 -0.75 -0.85 -1.22
(0.89) (0.94) (1.00) (1.06) (0.95)
-9.56 -0.91 -5.38 -5.57 -2.16
(2.85) (0.98) (1.76) (1.76) (0.79)
-4.72 -0.71 0.21 0.06 0.22
(2.91) (1.31) (1.70) (2.39) (0.62)

R2 0.07 0.06 0.07 0.07 0.07
Number of 
Observations 1,233 1,233 1,233 1,233 1,233

-0.015 -0.010 -0.025 -0.023 -0.020
(0.003) (0.005) (0.008) (0.007) (0.007)
-0.008 -0.005 -0.024 -0.022 -0.018
(0.002) (0.005) (0.008) (0.007) (0.007)

Notes to Tables 4 and 5: Table 4 reports the results of estimating equation (8) and Table 5 reports the results of 
estimating equation (9). Standard errors are in parentheses, clustered by industry. All regressions are estimated 
by OLS and include year dummies. All variables are in first differences. Entry and exit variables are constructed 
from the Census of Manufactures, 1963-1982. The sample incudes a balanced panel of industries with at least 
one entrant and one exiting plant for each Census year. The dependent variable in Table 4 is the log real value 
added of entrants by industry, between the previous and current Census years. The dependent variable in Table 
5 is the log real value added of plants exiting between the previous and current Census years. The regressions 
include the same independent variables as Table 2, and the total and supply effects are computed similarly to 
Table 2, accounting for the average shares of entry and exit in industry value added (see text). 

Supply Elasticity x 
Oil Price

Total Effect

Table 4:

Effect of a Price Shock on Entry, 1967-1982

Dependent Variable: Log Entry
Direct Elasticity x 
Oil Price

Demand Elasticity 
x Oil Price

Supply Effect



(1) (2) (3) (4) (5)

Inner Product 
Using Energy 

Share

Energy Share of 
Primary Industry

Mean Energy 
Share

Median Energy 
Share

Maximum Energy 
Share

0.52 1.12 0.99 1.59 0.15
(1.38) (1.41) (1.43) (1.46) (1.36)
-2.58 -1.46 -4.84 -6.41 -0.87
(4.33) (1.20) (2.21) (2.11) (1.02)
-8.90 -3.23 2.15 0.56 0.92
(3.54) (2.01) (2.20) (3.11) (0.79)

R2 0.11 0.11 0.11 0.11 0.10
Number of 
Observations 1,233 1,233 1,233 1,233 1,233

-0.003 -0.007 -0.010 -0.014 -0.002
(0.003) (0.004) (0.006) (0.005) (0.006)
-0.001 -0.005 -0.014 -0.017 -0.005
(0.003) (0.004) (0.007) (0.005) (0.006)

Supply Elasticity x 
Oil Price

Total Effect

Demand Elasticity 
x Oil Price

Supply Effect

Dependent Variable: Log Exit

Table 5:

Effect of a Price Shock on Exit, 1967-1982

Direct Elasticity x 
Oil Price



(1) (2) (3) (4) (5)

Inner Product 
Using Energy 

Share

Energy Share of 
Primary Industry

Mean Energy 
Share

Median Energy 
Share

Maximum Energy 
Share

-2.08 -1.73 -0.82 -0.87 -1.10
(0.54) (0.53) (0.52) (0.47) (0.46)

-5.66 -1.32 -3.76 -3.62 -1.39
(2.29) (0.45) (1.01) (0.95) (0.47)

0.91 0.51 0.28 -0.08 0.02
(1.96) (0.34) (0.76) (0.80) (0.27)

R2 0.05 0.05 0.05 0.05 0.05

Number of 
Observations 157,940 157,940 157,940 157,940 157,940

-0.072 -0.072 -0.132 -0.119 -0.104
(0.020) (0.020) (0.033) (0.026) (0.031)

-0.042 -0.051 -0.123 -0.104 -0.088
(0.017) (0.017) (0.033) (0.027) (0.030)

Table 6:

Effect of a Price Shock on Plant Value Added, 1963-1982

Dependent Variable: Log Real Value Added

Notes: Table 6 reports the results of estimating equation (10) by OLS. Standard errors are in parentheses, 
clustered by industry. All regressions include year dummies and all variables are in first differences. The sample 
includes a balanced panel of plants with positive value added in all Census years from 1963-1982. The 
dependent variable is the log of real value added for each plant and year. The regressions include the same 
independent variables as in Table 2. The total and supply effects are computed as in Table 2.

Direct Elasticity x 
Oil Price

Supply Elasticity x 
Oil Price

Total Effect

Demand Elasticity 
x Oil Price

Supply Effect



(1) (2) (3) (4) (5) (6) (7) (8)

Log Production 
Worker Hours, 

Current Oil Price

Log Production 
Worker Hours, 
Lag Oil Price

Log Production 
Worker Wage, 

Current Oil Price

Log Production 
Worker Wage, 
Lag Oil Price

Log Energy Use, 
Current Oil Price

Log Energy Use, 
Lag Oil Price

Log Materials 
Use, Current Oil 

Price

Log Materials 
Use, Lag Oil 

Price

-0.59 -0.64 -0.83 0.39 -1.33 -0.87 -1.08 0.55
(0.33) (0.55) (0.23) (0.43) (0.32) (0.80) (0.93) (1.59)

-2.88 -0.83 -1.96 -0.65 -3.99 1.58 -4.40 -0.02
(1.23) (1.58) (1.05) (1.14) (1.94) (2.10) (1.02) (2.73)

0.61 0.17 -0.42 -0.74 -1.60 1.27 0.52 2.86
(0.72) (1.23) (1.33) (1.00) (1.42) (2.49) (1.05) (2.87)

R2 0.07 0.07 0.05 0.05 0.08 0.08 0.05 0.05

Number of 
Observations 157,440 157,440 156,996 156,996 157,940 157,940 155,140 155,140

-0.029 -0.016 -0.029 -0.001 -0.055 0.002 -0.048 0.017
(0.011) (0.012) (0.008) (0.008) (0.015) (0.016) (0.014) (0.022)

-0.021 -0.006 -0.014 -0.005 -0.029 0.012 -0.032 0.000
(0.009) (0.012) (0.008) (0.008) (0.014) (0.015) (0.008) (0.020)

Table 7:

Effect of a Price Shock on Plant Input Demands, 1963-1982

Notes: Standard errors are in parentheses, clustered by industry. All regressions include year dummies and all variables are in first differences. The 
sample includes a balanced panel of plants with nonzero values of the dependent variable in all Census years from 1963-1982. The dependent variable 
in columns 1 and 2 is the log of production worker hours. The dependent variable in columns 3 and 4 is the log of the real hourly production wage. The 
dependent variable in columns 5 and 6 is the log of energy expenditure divided by the price of energy. The dependent variable in columns 7 and 8 is the 
log of materials expenditure divided by the price of materials. Output, energy and materials deflators are taken from the MPD. The independent 
variables in columns 1, 3, 5 and 7 are the same as in column 1 of Table 6. The independent variables in columns 2, 4, 6 and 8 are constructed similarly, 
using the one year lag price of oil in place of the current price. 

Direct Elasticity x 
Oil Price

Supply Elasticity x 
Oil Price

Demand Elasticity 
x Oil Price

Total Effect

Supply Effect




