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Abstract

A feature commonly used to distinguish between parametric/statistical models and
engineering models is that engineering models explicitly represent best practice
technologies while the parametric/statistical models are typically based on average
practice. Measures of energy intensity based on average practice are less useful in the
corporate management of energy or for public policy goal setting. In the context of
company or plant level energy management, it is more useful to have a measure of energy
intensity capable of representing where a company or plant lies within a distribution of
performance. In other words, is the performance close (or far) from the industry best
practice? This paper presents a parametric/statistical approach that can be used to
measure best practice, thereby providing a measure of the difference, or “efficiency gap”
at a plant, company or overall industry level. The approach requires plant level data and
applies a stochastic frontier regression analysis to energy use. Stochastic frontier
regression analysis separates the energy intensity into three components, systematic
effects, inefficiency, and statistical (random) error. The stochastic frontier can be viewed
as a sub-vector input distance function. One advantage of this approach is that physical
product mix can be included in the distance function, avoiding the problem of
aggregating output to define a single energy/output ratio to measure energy intensity.
The paper outlines the methods and gives an example of the analysis conducted for a
non-public micro-dataset of wet corn refining plants.
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Introduction 
 

The concept of energy efficiency in manufacturing is complex.  Energy efficiency 
is often analyzed in terms of intensity, or the ratio of energy to manufacturing output. 
This approach requires that a suitable aggregate measure of output be defined for the 
denominator of this ratio, as well as a measure of energy.  Reduction over time in energy 
intensity is interpreted as improvement in energy efficiency.  It has been demonstrated  
by a variety of  researchers (Boyd, McDonald et al. 1987; Boyd, Hanson et al. 1988; Lui, 
Ang et al. 1992; Greening, Davis et al. 1997; Ang and Liu 2001; Boyd and Roop 2004) 
that the aggregation of manufacturing output and shifts in the composition of that output 
influences the measurement of interpretation of these trends in intensity.   There are a 
number of different techniques that have been applied to the decomposition of energy 
intensity into trends of composition shift and “real” intensity change (for a survey of 
methods see Ang and Liu, 2001.) 

This paper addresses a different perspective.  Rather than simply describe the 
evolution of the energy output ratio over time, this research seeks to define energy 
efficiency relative to some benchmark, a notion of the “best practice” or lowest 
observable energy use.  Just at the use of the energy output ratio is one simple approach 
applied to normalize energy use, the relevant benchmark must also normalize for factors 
that influence the amount of energy required to produce the particular goods or services.  
In a seminal paper on measuring production efficiency Farrell (1957) identifies two 
possible choices for information on this benchmark;  “Although there are many 
possibilities, two at once suggest themselves – a theoretical function specified by 
engineers and an empirical function based on the best results observed in practice.”  
Engineering estimates of specific energy consumption have often been employed to 
estimate to compute the theoretical, practical, and economic level of energy use for a 
given process or production activity (for one example see Phylipsen, BloK et al. 1998).  
The concept used here for the benchmark is the second approach suggested by Farrell, an 
empirical estimate of the best observable performance, or “best practice”.   This paper 
uses plant level data and stochastic frontier analysis (SFA) to estimate the best practice 
given those plant specific characteristics.  SFA also provides a direct estimate of the 
distribution of energy efficiency measured relative to that estimated best practice. 
 SFA is one of many tools used to measure efficiency in general, not just energy 
efficiency2.  SFA uses a parametric statistical approach to estimating efficiency, but non-
parametric approach using linear programming, commonly referred to as data 
envelopment analysis (DEA) are also popular Murillo-Zamorano (2004). Huntington 
(1995) discusses the potential application of the DEA approach to the question of energy 
efficiency.   The DEA approach has been applied empirically to the study of energy 
production, for example Byrnes, Fare et al. (1987) in coal mining;  (Coggins and Swinton 
1996; Yaisawarng and Klein 1994) in electric utilities and associated pollution; (Pacudan 
and Guzmanb 2002; Hattori, Jamasb et al. 2005; Lowrey, Getachew et al. 2005) in 
electric distribution; and Kashani (2005) in petroleum production.  DEA has also been 
applied to OECD level analysis of energy and productivity Murillo-Zamorano (2005).  

                                                 
2 Studies applying DEA to general industries and productivity are too numerous to list.  
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The DEA approach has been applied to study energy use in buildings Ferrier and 
Hirschberg (1992) and the overall productivity of some energy intensive industries (Boyd 
1997; Boyd and Pang 2000; Boyd, Tolley et al. 2002) but not focused on the energy 
efficiency, per se. 

This approach has another benefit of eliminating the need to aggregate diverse 
industry outputs.  For an industry that has a single, well defined product several 
researchers have argued that it is desirable to measure energy use relative to a physical 
measure of production (Freeman, Niefer et al. 1997; Worrell, Price et al. 1997).  
However, with the exception of industries like cement, few sectors satisfy this criterion.  
For example, the specific manufacturing sector which is the empirical focus of this paper, 
wet corn refining, is a capital intensive process/conversion industry that uses a common 
raw material, corn, to produces a mix of products ranging from animal feed, to glucose, 
to ethanol.  The approach proposed here allows the energy use to be measured relative to 
diverse measures of physical production without any assumptions regarding aggregation 
across those products. 

This research also supports the Environmental Protection Agency’s (EPA) Energy 
Star program.   Energy Star is an information and voluntary action program designed to 
give consumers and business more information about the energy efficiency of consumer 
products, commercial office space, and manufacturing.  Energy Star considers a product 
or business eligible for Energy Star recogniction if the energy efficiency is in the 75th 
percentile or above, for comparable products or businesses.  In order to make this 
assessment, a method to assign a percentile ranking to any given plant is required.  SFA 
is well suited for this task since it provides an estimate the distribution of the energy 
efficiency.  

This research uses confidential data from the Census Bureau as the basis for the 
modeling.  Census bureau rules prevent the release of individual plant results.  Since 
Census permits the clearance of statistical parameters, SFA is again suited for this task.  
The end result is a model that can be used in a “out of sample” context, i.e. data other 
than that used in the estimation can be input into the model to compute an estimate for 
the “best practice” energy use and where the actual energy use lies within a statistical 
distribution of energy efficiency.  This statistical distribution is the basis for ranking the 
plant on a percentile basis.  We call the resulting model the Energy Performance 
Indicator (EPI) to avoid confusion with other types of engineering and managerial 
“benchmarks” of energy use.  

Energy is a small but significant component of the cost of corn refining.  
However, the goal of the analysis is to identify the technical energy efficiency and not to 
address the issue of cost efficiency, i.e. we take a production rather than dual profit or 
cost perspective.  It is presumed that if a level of energy efficiency is observed, that is 
because it was cost effective at some relevant prices, similar to the notion of revealed 
preferences.  To the extent possible, the analysis focuses on physical, rather than dollar 
measure of inputs and outputs.  This mirrors the focus on the production interpretation of 
technical efficiency. 

This paper describes the methods underlying the EPI and gives an example of the 
specific form of the statistical model for the wet corn refining industry.  The first section 
provides a motivation for the underlying analysis.  The second section explains the details 
of the statistical frontier approach and its interpretation as an input distance function.  



 5

The third section gives estimates for wet corn refining.  The last section discusses broader 
implications, caveats, etc. regarding applying these types of statistical models. 
 
Motivation for the Stochastic Frontier Approach 
 
The concept of the statistical frontier analysis that supports the EPI can be easily 
explained in terms of the standard linear regression model.  This section provides a brief 
overview.  A much more detailed discussion of the evolution of the statistical approaches 
for estimating efficiency can be found in Green (1993).  Consider at first, the simple 
example of a production process that has a fixed energy component and a variable energy 
component.  Given data on energy use, E, and production, y, for i=1,N plants the 
parameters α  and β  can be fit via a simple linear regression model.  
  

2, (0, )i i iE y Nα β ε ε σ= + +   (1) 
 

The linear regression gives the average relationship between production and energy use.  
If the departures from the average are due to energy inefficiency we would be interested 
in a version of (1) that gives the “best” or lowest observed energy use.  One way to do 
this is to shift the line downward so that all the actual data points are on or above the line.  
This “corrected” ordinary least squares (COLS) regression is one way to represent the 
frontier. 

While the COLS method has its appeal in terms of simplicity, a more realistic 
view is that not all the differences between the actual data and the frontier are due to 
efficiency.  Since we recognize that there may still be random effects such as errors in 
data collection/reporting, we still wish to include the statistical noise, or “random error” 
term, in the analysis, vi, but also add an second random component, ui , which follows a 
one sided distribution, to reflect energy inefficiency.  If we expand the simple example of 
energy use and production to include a range of potential effects we can write the more 
general version of the stochastic frontier model as 

 
( , , ; )i i i i iE f Y X Z β ε= +   (2) 

i ii u vε = −  20, vv N σ⎡ ⎤⎣ ⎦ ,    
Where  
E is energy use, either electricity, non-electric energy, or total primary energy, 
Y is production, measured by either physical production or total value  
X includes systematic economic decision variables (i.e. non-energy production 
inputs), 
Z includes systematic external factors, and 
β includes all the parameters to be estimated. 

 
We assume that energy (in)efficiency, u, is distributed according to some one-

sided statistical distribution3, for example gamma, exponential, truncated normal, etc.   It 
is then possible to estimate the parameters of equation (2), along with the distribution 
                                                 
3 We also assume that the two types of errors are uncorrelated, σu,v = 0. 
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parameters of u.   The approach that is used to estimate these parameters depends on the 
type of distribution that is used to represent inefficiency.   Gamma is a very flexible 
distribution, but also generates a model that is very difficult to estimate.  Exponential and 
truncated normal frontier models can be estimated using relatively conventional 
maximum likelihood techniques available in many modern statistical packages.  A wide 
range of additional distributional assumptions regarding the heteroscedasticity of either u 
or v are also possible.  In addition, the treatment of panel data is a significant issue in the 
application of stochastic frontier, since the inefficiency term is likely to be correlated 
over time within a plant or firm.  Greene (2002) presents an overview of panel 
treatments4.   

Given data for any plant, we can compute the difference between the actual 
energy use and the predicted frontier energy use  

 
i i( , , ; )i i i iE f Y X Z v uβ− + =   (3) 
 

Since we have estimated the distribution of u, we can compute the probability that the 
plant inefficiency is greater than this computed difference 
 

iPr( ( , , ; ) )i i i iinefficiency E f Y X Z vβ≥ − +   (4) 
 

We call this probability the EPI score and is equivalent to a percentile ranking of the 
energy efficiency of the plant.  In practice we only can measure 

i i( , , ; )i i i iE f Y X Z u vβ− = − , so this implies that the EPI score is effected by the 
random component of vi, i.e. the score will reflect the random influences that are not 
accounted for by the function f(*).  This is different from the more common use of SFA 
to estimate ui conditional on the observation of  i i( , , ; )i i i iE f Y X Z u vβ− = −  within the 
estimation sample.  Jondrow, Materov et al. (1982) have developed such a conditional 
estimator, but we do not have the ability to release results based directly on plant level 
observations used in the estimation process.  The estimation of efficiency conditional on 
the random shocks is discussed more below. 

The role of the function, f(*) in the EPI is to normalize for exogenous effects, i.e. 
it controls for factors that influence energy use but are not decided on the basis of energy 
use alone.  As was noted above, the types of production activities and structural factors 
that are included in the function f(*), used to derive the EPI, are industry specific.  
However, there are a number of common factors that any industry analysis will likely 
consider.  For simplicity we continue to assume that the function, f(*), is a linear function 
of the parameters, β , but it may include non-linear forms for Y, X, and Z.  There is no 
guidance on what mathematical form that f(*) should take, so an substantial amount of 
judgment is exercised.    

What variables to include (or exclude) for a given industry is driven by some 
knowledge and expectations about what factors will have significant influence on energy 
use in that sector.  This choice for Y may be the value of total plant production, a physical 
production measure, or several physical production measures if an industry produces 

                                                 
4 We do not pursue these panel treatments here since we only have two years of data for any given plant. 
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different products.  The ability to represent production as a vector instead of a scalar is 
very helpful, since the latter is the case for corn refining.  X may include quantity and 
types of materials purchased, labor, or plant capacity.  Z may include a variety of external 
factors like weather variables (e.g. heating and cooling degree days), capacity utilization, 
regulatory factors, etc.  Since the statistical formulation allows us to conduct test of the 
estimated parameters, the decision to include any of these variables can be driven by the 
data and model estimates.  Conventional statistical tests can determine which factors to 
include in the model. 
 
The Energy Frontier as an Input Distance Function  
 

The stochastic frontier can be viewed purely as a statistical tool, but also can be 
viewed from a production theoretic perspective.  The stochastic frontier was first 
proposed for estimation of production functions (Aigner, Lovell et al. 1977).  The 
stochastic frontier has also been applied as a tool to estimate distance functions when 
there are multiple inputs and outputs, (for example Morrison-Paul, Johnston et al. 2000).  
The application of the stochastic frontier and its interpretation as a distance function for 
multiple outputs is particularly useful in this context.  In order to establish the connection 
between the frontier as a purely statistical tool and the interpretation of the distance 
function we need to connect the conceptual motivation provided above with some 
specific micro-economic concepts of the minimal energy factor requirements function, 
input distance function, and sub-vector input distance function.  For more details on the 
underlying production theory of the distance function see Murillo-Zamorano (2004). 
 First define the minimal energy factor requirements function for the production 
vector, Y, and the non-energy inputs, X.   
 

* ( , )
inf{ : ( ; ) }

EE f Y X
E The input vector X E can produce the output vector Y

=
=

 (5) 

 
This factor requirements function is analogous to equation (2) above.    

The input distance function is defined as the largest scalar amount that one can 
proportionally reduce all inputs, energy and non-energy, and still be able to produce the 
output vector Y.   

 
( , ; ) sup{ :( ; ) }X E

ID Y X E can produceYλ λλ=   (6) 
 

It is also possible to define the sub-vector input distance function by leaving some inputs 
fixed and only scaling a subset of inputs. In this application we scale a single input, 
energy. 
 

( , ; ) sup{ :( ; ) }E
SID Y X E X can produceYλλ=   (7) 
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Figure 1 Graphical Example of the Input and Sub-vector Input Distance Functions 

 
Each of these functions is illustrated in figure 1.  A standard production isoquant for a 
fixed input vector Y is shown.  In figure 1 the input distance function DI is the ratio 
OA/OB.; the sub-vector energy input distance function is OA/OC.  It is easy to see that 
the relationship between the factor requirements function and the sub-vector energy input 
distance function is, 
 

* ( , )( , ; ) E
SI

f Y XED Y X E E E= =   (8) 

 
Since the distance function, including the energy sub-vector formulation, is homogenous 
of degree -1 in inputs we have, 
 

1( , ; ) ( , ; )
( , ;1)

( , )

E
E ESI SI

SI

E

D Y X E D Y X
D Y X

E
f Y X

E

=

=

=

  (9) 

 
The energy factor requirements function is equivalent to the sub-vector distance function 
evaluated at E=1. 
 The section above makes the factor requirements function an operational 
approach via (2) and adding the additional characteristics vector Z.  
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( , , ; )i E i i i i iE f Y X Z u vβ= + −   (10) 

 
Based on this empirically operational model we can show that, 
 

( , , ; )1

( , ; )

i i E i i i

i i

SI

u v f Y X Z
E E

D Y X E

β−
− =

=
  (11). 

 
Equation (11) provides a connection between the empirical approach using a factor 
requirements view and the sub-vector distance function. 
 It is also possible to use (9) to directly estimate the sub-vector distance function 
by taking the logs of both sides and suppressing subscripts. 
 

ln( ( , ; )) ln( ) ( , ;1)SI SID Y X E E D Y X=− +   (12). 
 

Rearranging both sides yields and assuming DSI can be estimated by a log linear (Cobb 
Douglas) model5 with a standard statistical error term, u, then we have, 
 

1

1 1
ln( ) ln( ) ln( ) ln( ( , ; ))

y

i i

m n
x

i i SI
i i

E Y X u D Y X Eβ β
−

= =

⎡ ⎤
= + + −⎢ ⎥
⎣ ⎦
∑ ∑   (13). 

In this case we interpret the efficiency error term, v, as a percentage difference, i.e. 
ln( ( , ; ))SID Y X E =v.  The major difference in interpretation between (13) and (11) is that 
the in (11) the subvector efficiency includes the random shocks and in (13) the sub-vector 
efficiency does not include random shocks.  The latter is the more common interpretation 
in the literature. Jondrow, Materov et al. (1982) (JMLS) were the first to provide an 
estimate of the vi conditional on the observed residual i iu v− when the efficiency 
distribution is half-normal.   Green (1993) summarizes this approach for the truncated 
normal, exponential, and gamma distributions.  For our applications Census will not clear 
plant level estimates of the JMLS conditional estimator for efficiency, so we focus on the 
structural and distributional parameter estimates using the factor requirements 
interpretation. 
 
Data Sources 

This analysis uses confidential plant-level data from two sources: the 
Longitudinal Research Database (LRD) maintained by the Center for Economic Studies 
(CES), U.S. Bureau of the Census (Census), and Galitsky et al (2003).  The LRD includes 
the non-public, plant-level data that is the basis of government-published statistics on 
manufacturing.  CES has constructed a panel of plant-level data from the Annual Survey 
of Manufacturers (ASM) and the Census of Manufacturers (CM).  The LRD includes 
economic activity — for example, labor, energy, plant and equipment, materials costs, 

                                                 
5 The same approach can be used if DSI is approximated by a Translog. 
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and total shipment value of output — for a sample of plants during the survey years and 
complete coverage during the years of the economic census.    

Under Title 13 of the U.S. Code, this data is confidential; however, CES allows 
academic and government researchers with Special Sworn Status to access these 
confidential micro-data, under its research associate program.  The confidentiality 
restrictions prevent the disclosure of any information that would allow for the 
identification of a specific plant’s or firm’s activities. Aggregate figures or statistical 
coefficients that do not reveal the identity of individual establishments or firms can be 
released publicly.  The ability to use plant-level data, rather than aggregate data, 
significantly enhances the information that can be obtained about economic performance, 
particularly when examining the issue of energy efficiency.    
 
Industry Specific Results 

This section gives background on the wet corn milling process, the industry 
specific estimates for the energy requirements function f(*) and the distribution estimates 
for the error and efficiency terms.  The model for corn refining uses a linear equation and 
a truncated normal distribution for efficiency.  We take the approach here that the 
empirical energy factor requirements function can be estimated as a linear function.  The 
model specification pays particular attention to the role of product mix.  Capacity and/or 
capacity utilization also play important empirical roles in process industries. 

Wet corn milling (SIC 2046 or NAICS 311221), which is also referred to as corn 
refining, is a relatively sophisticated process producing a variety of products for the 
paper, food, beverage and other industries. Wet corn milling plants require a large capital 
investment and are bound by large economies of scale. Typical plants in the US process 
at least 100,000 bushels per day (bu/day, or 2,500 tonne/day) and operate continuously 
for nearly 365 days per year.  

The most important outputs of wet corn milling are starch, corn sweeteners and 
ethanol. Both corn sweeteners and ethanol are made from the starch in the corn. 
Sweeteners fall into three major categories: corn syrup, dextrose and fructose, often 
called glucose syrup.  Ethanol is an increasingly important component of the U.S. fuel 
supply. About 60% of the ethanol produced in the U.S. currently comes from wet corn 
milling6, generally produced in the refining factories along with starches and syrups.7 
Corn starch is another important corn refining product, with both food and industrial 
applications, such as the paper and corrugating industries.  Corn oil, produced from the 
germ component, is the other main high value product.  Corn refining also produces 
many byproducts that are used in animal feed.  Table 1 gives an overview of the output 
from wet corn milling industries on a physical output basis and value basis for the last 
year information is available.   The production process is illustrated below. 
 
 

                                                 
6 This percentage is based on value of output. The remaining amount is made mostly through ‘dry corn 
milling’, a similar process, which produces ethanol and animal feed byproducts, but not the other high-
value products that wet corn milling produces. 
7 The production of ethanol falls under a different industrial classification within the Chemicals industry. 
Wet corn milling falls into SIC 2046 and NAICS 311221. Ethanol production in the SIC system fall into 
the broad category 2869 Industry Organic Chemicals, Not Elsewhere Classified, but is separately classified 
in NAICS 325193, as ethyl alcohol. 
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Table 1: Wet Corn Milling Product Output 
 Million tons, 2001a $Billion, 1997b 

Corn Sweeteners 16.4 $3.1 

Starch Products 2.9 $1.5 

Corn Oil 0.6 $1.0 

Byproducts 7.2 $1.6 

Ethanol N/A $1.4 
a These values are from the Corn Refining Association, reporting on 
the output from its member companies. 
b These values are from the Census and are reported based on product 
output, not industry output.  
Source: as reported in Galitsky, et al (2003) 
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Figure 3 Corn refining process flow diagram 

 
The corn refining model is based on total primary energy, defined as the total 

Btus of purchased/transferred fuels, steam, and hot water plus the total amount of 
purchased/transferred electricity converted from kWh to Btu at roughly the average rate 
of conversion efficiency for the entire U.S. electric grid, 10,236 Btu /kWh.  Primary 
energy is used to more closely align our energy measure with the underlying goals of the 
EPA Energy Star program, pollution reduction at the source.  For this reason a kWh of 
electricity is treated as the equivalent energy at the production source.  The data are taken 
from the Census of Manufacturing for 1992 and 1997 from NAICS code 311221, this 
means that plants that only produce ethanol were excluded.  Only those plants with 
capacity estimates either identified by Galitsky et al (2003) or though private 
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communication, which could be matched to the CM data, were included in the analysis.   
Plants that produced products in this NAICS category, but did not purchase corn as the 
primary input were assumed to be germ and corn oil processors and were not included in 
the analysis.  Other plants may have been dropped from the analysis due to irreconcilable 
discrepancies in the data.   The result is that 37 observations (plant years) were included 
in the analysis.  Since there are 29 plants identified in Galitsky et al (2003), one of which 
is now closed, these number of plants-years in two years of data this sample seems fairly 
representative of this industry.  Product mix is expected to be quite important in this 
analysis.  The detailed product types collected by the Census for the Wet Corn Milling 
Industry are shown in table 28.  Sample means for selected variables are shown in table 3.  
Confidentiality restrictions prevent disclosure of means for production mix variables, but 
the total value of shipments is shown. 

 
Table 2: List of Corn Refining Products 
GLUCOSE SYRUP (Corn syrup)   
DEXTROSE MONOHYDRATE & ANHYDROUS  
HIGH FRUCTOSE CORN SYRUP (HFCS)  
CORN STARCH AND DEXTRIN   

Modified  
Not modified 

CORN OILS  
ETHYL  ALCOHOL   
GLUTEN FEED & MEAL  

 
A variety of specifications, including various aggregations and disaggregation of 

the product categories were initially tried.  The initially preferred model was cleared by 
Census for release to the industry review process.  At first the comments focused on 
product specification.  At the request of industry participants we disaggregated the 
monohydrate and anhydrous dextrose from the other categories of sweeteners.  This 
product is a very high grade sugar that requires substantial processing.  We also 
examined data on the sugar content of high fructose corn syrup (HFCS).  Census data has 
three broad categories of HFCS sugar content.  The disaggregation of the monohydrate 
and anhydrous dextrose made a substantial improvement to the model, while the sugar 
content of HFCS did not.  We suspect that data quality of the HFCS categories to be 
responsible.  We also tested whether location driven differences in climate, in the form of 
Heating Degree days (HDD) would have an impact on energy use.  It did not.  

 
In subsequent comments the issue of gluten feed was raised. One product 

produced by corn refining is gluten feed.  This by-product of the initial milling and 
separation is sold at animal feed.  The industry typically dries the gluten feed for 
shipment, but plants that are close to agricultural markets may ship some of the product 
in “wet” form.  Companies voluntarily provided data on the moisture content of their 
shipments of gluten feed.  Specifically they provided data on the dry solids content.  By 

                                                 
8 This represents the entire product category list included by the U.S. Census Bureau on the Economic 
Census forms that companies are required by law to prepare every five years.  Other data (not shown) from 
the Census is used to develop the EPI.  Most plants will only produce a sub-set of these products.  The 
product types shown here would be the basis for the production mix adjustments to the EPI. 
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taking the ratio of dry solids to the “commercial basis” as reported to Census we 
constructed a moisture variable.  This variable was significant and including it improved 
the standard errors of the other variables in the model.  

 
Table 3: Sample Means for Selected Variables 

 

 
 

For simplicity, we assume that the function form is linear in the parameters, but allow for 
non-linear transformations of the variables.  A log transformation was not feasible since 
all plants do not  produce every product.  We found that non-linear (quadratic) terms for 
capacity utilization was appropriate.  Several alternatives for the distribution of the 
inefficiency term, u, were tried.  The distribution that performed best was half normal.  
The issue of panel data in the estimation was felt to be less important since we only have 
(at most) two observations per plant which are five years apart. The estimated coefficient 
of f(*) are given in table 4.  The last two variables in table 4 are the standard deviation of 
random error term, v, and the inefficiency term, u, which is assumed to be normally 
distributed and truncated at zero.   
 

( )
50 1 2 3 4cos cos

2

76 8 i i( ) u -v

i Modified Starch M A Glu e Glu e Alcohol

Corn Corn
Capacity Capacity Moisture

E Corn Y Y Y Yβ β β β β β

β β β

= + + + + + +

+ + +
 ( 6 ) 

 
The variables included in the final model are: 
Corn  Total amount of corn processed in a year, 109 lbs. 
YModified Total amount of modified starch produced in a year, 109 lbs. 
YMAGlucose Total amount of monohydrate and anhydrous dextrose, 109 lbs. 
YGlucose  Total amount of Glucose syrup sweeteners and solids109 lbs. 
YAlcoshol Total amount of alcohol, 109 gal, 
Moisture 1 - %Moisture content of Gluten feed 
CU  Plant capacity utilization (total corn processed / annual capacity) 
E  Total Primary Energy (defined above), in trillion Btus. 
 
The major effects in the corn refining model are total corn processed, the mix of 

products, and capacity utilization.  Non-modified starch and high fructose corn syrup are 
not included in the model, since there is a mass balance relationship between the amount 
of corn process and the final products we can interpret all of the production variables 

Variable name Sample Mean 
X 2.644 
E 7.506 
E (from fuels) 5.327 
E (from electricity) 2.014 
CU 0.757 
Total Value of Shipments (million dollars) 289.9 
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relative to a plant producing either of these two products9.  For example, modified starch, 
alcohol, and anhydrous dextrose all have higher energy requirements, for a given level of 
corn processed into either starch or high fructose corn syrup, while Glucose sweeteners 
would have relatively lower energy requirements.  Gluten products were excluded from 
the model since all plants produce them in quantities that are nearly proportional to the 
amount of corn processed, i.e. they are direct by products. 

 
Table 4: Parameter Estimates - Total Primary Energy Frontier in Corn Refining  

 Coefficient Standard Error z 
Constant 2.78 0.0008 3275.1 
Corn 2.90 0.0001 24568.1 
Modified starch 2.12 0.0003 6551.4 
Monohydrate and 
anhydrous  4.48 0.0006 7943.8 
Glucose -0.51 0.0001 -4622.9 
Alcohol 16.12 0.0005 32559.1 
Utilization -11.50 0.0022 -5203.5 
Utilization 2 5.37 0.0014 3899.0 
Moisture content (%) 0.03 0.0005 66.0 

vσ  -30.77 178.67 -0.17 
uσ   (Truncated Normal) 1.50 0.23 6.44 

 
To illustrate how the product mix affects the frontier and a plants relative 

efficiency a hypothetical plant is constructed.  The product mix shown in table 5 is not a 
specific plant, nor based on the sample means, but is consistent on a mass balance basis 
with the amount of corn processed.  In this comparison case the non-modified starch 
production is shifted to modified starch production.   This shifts the frontier.  A plant with 
the same level of energy use would have lower levels of inefficiency and a higher 
percentile ranking based on the estimated variance of the truncated normal efficiency 
term.   

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
9 Including either one of these two variables did not improve the model.  The coefficients were both 
statistically insignificant from zero and each other. 
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Table 5: Example product mix and comparison case inputs 
 Baseline Comparison 

Case 1 
Total Grind (106 lbs) 2,644.50 2,644.50 
Average Grind Rate (Bushels/Day): 131,176.00 131,176.00 
Maximum Grind Rate (Bushels/Day): 131,176.00 131,176.00 
Capacity Utilization: 100% 100% 
HFCS Sweeteners (106 lbs) 300 300 
Crystaline & anhydrous glucose  (106 lbs) 0 0 
Other non-HFCS Sweeteners  (106 lbs) 500 500 
Modified Starch  (106 lbs) 743.8 943.8 
Non-Modified Starch  (106 lbs) 200 0 
Total Alcohol  (106 gals) 0 0 
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Figure 1: Comparison of Hypothetical Corn Refineries with the Same Energy Consumption. 
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Summary and Directions for Future Research 
 

This paper presents the motivation for the application of stochastic frontier 
regression analysis to measure the distribution of efficiency in manufacturing sectors.  
The estimated models are intended for use by plant and corporate energy managers to 
provide information on their energy performance relative to their peers.  In addition, the 
EPA ENERGY STAR program provides public recognition for companies with plants 
that perform in the 75th percentile.  

The model that is developed can be viewed as a heuristic application or as a sub-
vector distance function.  The paper takes the first approach to the corn refining sector 
and the second approach to the cement sector.  A number of natural extensions of this 
research present themselves, particularly regarding the latter interpretation of the analysis 
as a distance function.   The first extension is to ask whether the distribution of energy 
(in)efficiency is similar to the distribution for total production efficiency.  By estimating 
an input distance this comparison could be made to address the question “Are plants that 
are relatively more inefficient in the total factor sense more (or less) inefficient in the 
single factor of energy?”  Boyd and Pang (2000) use a DEA application for the glass 
industry and found that plants with low total factor efficiency have relatively lower 
energy efficiency.   Understanding the relationship between single and multi-factor 
efficiency in a stochastic frontier context would be important. 

This paper also treats energy as an aggregate of electricity and fuels.  The sub-
vector interpretation would allow us to treat these energy forms without aggregation and 
could shed light on the possible differences between efficiency in the use of these two 
types of energy.   The question of aggregation also comes up when the model is used to 
assess efficiency of multi-plant firms.  The model can provide plant specific efficiencies, 
but does not address how these may be aggregated to a firm level efficiency measure. 

Treatment of the panel data issues is another important extension, particularly if 
the time series component of the panel were expanded.  Data from the 2002 Census of 
Manufacturing has just become available within the RDC network and extending the time 
series back to the eighties is feasible10.   Battese and Coelli (1995) offer one approach to 
the panel data by treating the truncation of the normal inefficiency term as a function of 
firm level variables.  The issue here is how to specify those effects.  Greene (2002) 
considers fixed and random effects in the frontier estimation, but recognizes the difficulty 
in interpreting the results.   

Extending the functional form beyond the simple linear to include flexible forms 
is desirable.  This is not feasible for corn milling plants due to the small sample and wide 
range of product mix.  Dashti (2003) considers a wide range of flexible forms using the 
Bayesian approach to the frontier estimation, although he focuses on comparing firm 
efficiency measures across the various functional forms.  Census confidentiality would 
not permit the disclosure of those results, but the approach could be used internally at 
Census to evaluate and choose a functional form. 

                                                 
10 Major changes in energy prices occurred in the early eighties, so applying a production approach might 
not be as appropriate to a period with dramatically different energy prices. 
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