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Abstract 

 

In markets where spatial competition is important, many models predict that average prices are 

lower in denser markets (i.e., those with more producers per unit area).  Homogeneous-producer 

models attribute this effect solely to lower optimal markups.  However, when producers instead 

differ in their production costs, a second mechanism also acts to lower equilibrium prices: 

competition-driven selection on costs.  Consumers’ greater substitution possibilities in denser 

markets make it more difficult for high-cost firms to profitably operate, truncating the 

equilibrium cost (and price) distributions from above.  This selection process can be empirically 

distinguished from the homogenous-producer case because it implies that not only do average 

prices fall as density rises, but that upper-bound prices and price dispersion should also decline 

as well.  I find empirical support for this process using a rich set of price data from U.S. ready-

mixed concrete plants.  Features of the industry offer an arguably exogenous source of producer 

density variation with which to identify these effects.  I also show that the findings do not simply 

result from lower factor prices in dense markets, but rather because dense-market producers are 

low-cost because they are more efficient. 

 

 



 

I. Introduction 

 When spatial product differentiation is important, theory typically associates higher 

producer densities—the number of producers per unit area—with more intense competition and 

lower prices in a market.  Closer producer spacing raises substitution possibilities for consumers, 

raising the cross-price elasticities of producers’ residual demand curves and lowering optimal 

markups and prices.1  This effect is manifested in, for example, Salop’s (1979) spatial 

competition model.  Exogenous increases in consumer density (the number of purchasers 

dispersed around the unit-circumference circular market) yield equilibria with more and closer-

spaced producers and a lower equilibrium price.  A similar mechanism is also appealed to 

(though the spatial element is implicit) in Bresnahan and Reiss (1991), which infers differences 

in the intensity of competition from the response of the number of producers to market size 

differences. 

A typical assumption in such models is that producers have homogeneous production 

costs.  Thus they only describe the response of the average (unique) price in a market to shifts in 

the intensity of competition.  In the more realistic case where producers have different costs, 

there are richer predictions regarding spatial competition’s effect on prices.  Indeed, 

heterogeneous-producer frameworks imply a new, selection-based channel through which 

competition influences equilibrium prices (though the above effect on markups can remain as 

well).  This paper describes this new mechanism, tests for it in an industry where spatial 

competition is significant, and finds support for its implications. 

The basic intuition of the mechanism can be put rather simply.  Increases in the toughness 

of competition strengthen the selection process that eliminates relatively inefficient (high-cost) 

producers from the market.  This truncates the equilibrium production-cost distribution from 

above, and this is in turn reflected in a truncated equilibrium price distribution.  Therefore with 

heterogeneity, more competitive markets exhibit not only lower average prices, as the 

homogeneous-producer frameworks imply, but also lower upper-bound prices and (given some 

additional regularity assumptions on the underlying cost distribution) less price dispersion.2  In 

                                                 
1  However, Ohta (1981) discusses a few exceptions to the conventional wisdom. 
2 Given the spatial nature of the market, one could of course observe dispersion in delivered prices in the 
homogeneous-producers case because of differing transport costs across consumers.  However, factory-door/free-on-
board prices—those for which I have data in this study—would be equal.  In the heterogeneous-producers case, 
however, free-on-board prices exhibit dispersion.  Note also that a simple generalization of the homogenous-
producers model to allow for noisy prices (say from mismeasurement) would not fit the implications of the 
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other words, competition among heterogeneous producers shapes the equilibrium price 

distribution through its impact on the equilibrium cost distribution. 

 I present below empirical evidence regarding the interaction between spatial competition 

and equilibrium prices.  In a case study of the ready-mixed concrete industry (SIC 3273), I find 

strong support for the conventional wisdom that average prices tend to be lower in markets 

where spatial competition is expectedly more intense.  (I describe the measurement of 

competition intensity and argue its exogeneity below.)  However, I also document nontrivial 

within-market price dispersion, and find that this dispersion as well as the upper-bound market 

price both fall with increases in competition.  These results suggest that competition-driven 

selection among heterogeneous-producers is important to understanding prices in industries 

where transport costs are nontrivial. 

I go on to show that these price patterns do not seem to result from systematic differences 

in input costs across markets, further suggesting that the selection mechanism is acting along the 

efficiency margin, weeding out the less efficient in more competitive markets.  This is consistent 

with evidence I have found in previous work (Syverson 2004a, 2004b) that product 

substitutability, spatial or otherwise, shapes equilibrium productivity distributions. 

The paper intermeshes conceptually with the previous empirical literature along two 

primary dimensions.  Recent research such as Sorensen (2000), Goolsbee and Brown (2002), and 

Chevalier and Goolsbee (2003), has inferred consumers’ substitution possibilities from observed 

price dispersion.  These papers rely on differences in search incentives or technology (e.g., repeat 

purchases or access to the internet) to identify substitutability changes driven by increases in 

search intensity.  In this paper, the analysis explicitly spatial since transport costs are the source 

of consumers’ limited substitution opportunities.  The focus on the transport-cost-intensive 

ready-mixed concrete industry also offers, as I will explain below, exogenous variation in 

competitiveness across a large number of geographically independent markets, allowing 

considerable empirical leverage in observing equilibrium price effects. 

The paper’s second point of contact with the literature is the research on selection 

mechanisms in heterogeneous-producer industries.  Empirical work in this area, such as Baily, 

Hulten, and Campbell (1992); Olley and Pakes (1996); Foster, Haltiwanger, and Krizan (2002) 

                                                                                                                                                             
selection-driven mechanism.  Selection acts asymmetrically on the cost and price distributions, implying changes in 
the upper-bound and dispersion of the distributions that noise alone would not create. 
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has shown that competitive forces tend to drive out less efficient producers in industry 

equilibrium.  I show evidence here that these mechanisms also seem to be important in creating 

and shaping equilibrium price distributions across markets.  While the results are obtained for a 

particular industry, given the empirical ubiquity of price dispersion for what may at first glance 

be homogeneous goods, it is likely that the mechanisms extend their reach beyond the ready-

mixed concrete industry alone. 

 

II. Conceptual Framework 

A. Competition-Driven Selection 

Because of space considerations, I present here an intuitive discussion of the theoretical 

framework for selection-driven price distribution effects in lieu of presenting a formal model.  

However, models yielding such results can be found in Syverson (2004a and 2004b).3  (The 

latter is explicitly spatial and is most directly applicable to the ready-mixed concrete industry, 

though both yield the same implications with regard to the shape of the equilibrium price 

distribution.) 

Consider entry into a market as a two-stage, simultaneous move game.  In the first stage, 

ex-ante identical producers decide, upon observing the level of demand, whether to take an initial 

entry step into the market.  If they choose to do so, they incur a sunk cost and then learn their 

own (constant) marginal cost of production.  This marginal cost is drawn from a distribution 

common to all entrants.  Upon learning its cost level, the firm then decides whether or not to 

commence production, which entails another fixed cost.4 

Two conditions are imposed on the equilibrium: no producer operates at a loss (they can 

always forgo production and earn nothing, though they must forfeit any sunk costs if so), and 

entry occurs until ex-ante expected profits (i.e., before sunk entry costs are paid and cost draws 

are learned) are zero.  Because a producer’s operating profits decrease in its marginal cost, the 

former condition implies there must be a critical marginal cost draw such that a producer with 

                                                 
3 Some additional models of selection among heterogeneous producers in an industry equilibrium (though not all are 
concerned with price effects) include Hopenhayn (1992), Asplund and Nocke (2003), and Melitz (2003). 
4 Empirical evidence suggests that producers do sink resources into entry before learning their costs.  Several papers, 
such as Dunne, Roberts, and Samuelson (1989); Baily, Hulten, and Campbell (1992); and Foster, Haltiwanger, and 
Krizan (2002) have found that young plants have higher failure (exit) rates than incumbents.  Thus it seems entering 
producers do not typically know very well their own position relative to their competition when it comes to 
profitability components like production costs. 
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this cost level earns zero operating profits.5  Those drawing costs higher than this level will 

choose not to produce in equilibrium. 

This cutoff (zero-operating-profit) marginal cost is critical because it determines the 

extent of cost truncation in equilibrium.  Changes in exogenous factors that shift this cutoff level 

to lower cost levels further truncate the distribution.  Clearly, then, to understand the truncation 

effect of greater demand density and its concomitant increase in spatial substitutability, one 

needs to understand how density affects this cutoff cost level.  In equilibrium, the cutoff is 

pinned down by the second, free-entry condition above: it is the value that sets expected profits 

at entry equal to zero. 

To see why, consider the cutoff cost’s role in the free-entry condition.  The expected 

gross benefit of entry equals the probability of obtaining a cost draw that will yield positive 

operating profits multiplied by those expected operating profits.  Free entry equates this value to 

the sunk entry cost.  Clearly, a higher cutoff cost level corresponds to a higher probability of 

successful entry.  But an increase in the cutoff level also increases the expected profits 

conditional on commencing production, because this lets higher-cost producers into the market, 

raising the average costs of any given producer’s rivals.  Therefore the expected value of entry 

increases monotonically in the cutoff cost level, implying there will be a unique equilibrium 

cutoff where the free entry condition holds. 

Now consider the comparative static of interest: the change in the cutoff marginal cost in 

response to a rise in market demand (and since the market area is fixed, an increase in demand 

density).  For simplicity, let it be simply a multiplicative increase from the previous level.  In the 

absence of any other change in the market, this would clearly raise the expected value of entry, 

since each producer would sell more output at the same price.  Therefore there must be a 

countervailing effect that lowers expected profits enough to ensure the free-entry condition 

holds.  An increase in the number producers paying to enter the market will induce greater 

substitution opportunities for market consumers, lowering optimal markups and prices.  If the 

loss in profits from lower prices is greater than the gain due to higher sales for the formerly 

marginal producer (and Syverson 2004a and 2004b show that this is the case), this will decrease 

                                                 
5 We are implicitly assuming that the marginal cost distribution spans a sufficient domain so that not every draw is 
profitable (or unprofitable) given the size of the sunk entry and fixed production costs. 
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the cutoff cost value.6  This in turn leads to a smaller probability of successful entry and lower 

expected profits from production, bringing the expected value of entry back to zero and yielding 

a new equilibrium with a lower cutoff cost level.  There the initial increase in demand density 

leads to a more severe selection in the market.  The upper-bound price and dispersion impacts 

discussed above reflect the progressive truncation of the marginal cost distribution when density 

rises.  Furthermore, the truncation combines with lower optimal markups to result in lower 

average prices in denser markets. 

 

B. Ready-Mixed Concrete as a Case Study 

The U.S. ready-mixed concrete industry offers several advantages as a test case to study 

the equilibrium price effects of the intensity of spatial competition.  I discuss these briefly here. 

Ready-mixed concrete’s relative homogeneity minimizes price dispersion driven by 

variation in vertical and/or horizontal product attributes (other than location, of course), 

sharpening the focus on how cost differences, rather than quality disparities, affect the price 

distribution.7 

The industry’s very high transport costs (ideal maximum delivery times are 30-45 

minutes’ drive from a plant) are also helpful.  Besides creating the spatial nature of industry 

competition, they imply that the national industry is actually comprised of a number of virtually 

independent markets.  There is considerable variation producer density and spatial 

substitutability across these markets.  It is this disparity in producer spacing that results in 

differences in the toughness of competition from market to market. 

                                                 
6 Not all producers need suffer profit decreases when substitutability rises; for instance, low-cost producers could 
benefit if their quantities sold become more responsive to their cost and price advantage when substitutability is 
higher.  What is important is that the profits of relatively high-cost producers fall. 
7 While there are some vertical dimensions along which concrete can be differentiated (compressive strength, cure 
time, etc.), the impact of such differences on this study is mitigated for two reasons.  First, discussions with industry 
managers suggest that the mix of vertical concrete types produced varies mostly within, rather than between, plants.  
Delivery constraints more or less require that all plants make concrete batches along the entire vertical dimension, 
rather than the alternative of some plants specializing in high-end product and others in low-end concrete.  Thus it is 
likely that across-plant variation in product quality mix is small.  This is also suggested by my findings below that 
price levels and price dispersion are smaller in dense markets.  If across-plant quality variations were substantial, 
one might expect the opposite.  Presumably the willingness to pay for quality would be higher in more urbanized 
areas (perhaps due to income effects), tending to raise the expected average price.  Moreover, larger markets could 
better support producers who specialized in a particular quality, which would tend to increase observed price 
dispersion.  These patterns are not seen in the data.  Finally, to the extent that quality variation is embodied in input 
prices, I control for their effects in some specifications below and find that the basic results do not change. 
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One problem with inferring the price effects of market competition by looking at markets 

with different producer densities is that this spacing is itself an endogenous response to the 

competitive environment in a market.  However, the input-output patterns in the ready-mixed 

industry allow a way to circumvent this endogeneity.  I am able to measure the density of ready-

mixed demand using construction sector employment per square mile in the local market.  This is 

a virtually comprehensive demand measure; the sector (SICs 15-17) buys 97.2 percent of ready-

mixed output according to the 1987 Benchmark Input-Output Tables.  Thus I observe a major 

determinant of producer density in local markets (the empirical correlation between demand 

density and producer density is roughly 0.7).  Especially useful, though, is the fact that the 

demand density in a market is arguably exogenous to the nature of competition among local 

ready-mixed concrete plants.  Because construction projects require output from a wide array of 

industries, the cost share of ready-mixed alone is small (only 2.0 percent of the construction 

sector’s total costs, looking again at the 1987 Input-Output Tables).  Therefore a shock to the 

competitiveness of the local ready-mixed industry—that would lower average concrete prices, 

say—is unlikely to spur a construction boom.  Causation travels from construction-sector 

demand to concrete competitiveness, not in the reverse direction. 

Focusing on the ready-mixed industry also affords the use of data from the Census of 

Manufactures (CM), a rich source of establishment-level production data.  Unlike many 

economic microdata sets, the CM has at the detailed product level information on both 

establishments’ revenues and physical units.  This allows me to, in a given year, compute 

average unit prices for roughly 3100 ready-mixed plants spread across hundreds of local markets.  

Moreover, the CM has available information on intermediate materials input prices for a subset 

of these producers.  This allows me to see if the key empirical findings are affected by input 

price differences across markets. 

 

III. Data 

A. Output and Factor Prices 

To test the theoretical implications outlined above, I use data collected from several 

thousand ready-mixed concrete (SIC 3273) plants in the 1977, 1982, 1987, and 1992 Census of 

Manufactures (CM) Product Files.  These contain plant-level data on the value of shipments by 

detailed (seven-digit SIC) product category.  Furthermore, when feasible, annual production in 
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physical units is also collected.  (The unit is thousands of cubic yards for ready-mixed concrete.)  

This data allows unit prices to be computed at the plant level, offering an unusually rich set of 

producer prices from many different local markets that I exploit here.8 

There are two important notes regarding these calculated unit prices.  First, the value-of-

shipments data is collected on a free-on-board basis, i.e., exclusive of any shipping costs.  Prices 

should reflect not the delivered cost of the ready-mixed but rather what one could buy it for at 

the plant gate.  This price measure better reflects the prices described in the theoretical 

framework and allows direct testing of the theory.  The observation of lower prices in denser 

markets does not simply reflect shorter average shipment distances in such markets.  

Second, the unit prices are annual averages, which are equivalent to a quantity-weighted 

average of all transaction prices charged by the plant during the year.9  Thus the prices reflect 

pricing decisions sustained over the course of a year, as opposed to promotional or other 

(uncharacteristic) temporary prices that might be captured in a single snapshot.  While short-term 

fluctuations are interesting in their own right (and have been explored in papers such as Kashyap 

[1995]; Lach [2002]; and Bils, Klenow, and Kryvtsov [2003]), I am concerned here with 

productivity-driven price differences that are supported in long-run equilibria.  Removing high-

frequency price fluctuations allows clearer focus on the price dispersion source of interest. 

Roughly 5200 ready-mixed plants operate in the United States.  While the CM contains 

information on each of these, the data required to compute unit prices is not available for all 

plants.10  The largest excluded set, roughly one-third of plants, are Administrative Record (AR) 

establishments.  These are very small producers (typically with less than five employees, so their 

                                                 
8 Roberts and Supina (1996) and Beaulieu and Mattey (1999) use unit prices computed from the same data to study 
patterns of price dispersion across several industries.  The former paper focuses on issues regarding the persistence 
of prices over time and their correlation with producer sizes, while the latter explores the links between industry-
level inflation and price dispersion. 
9  Prices are deflated to 1987 dollars using the ready-mixed concrete industry’s output deflator from the NBER 
Productivity Database. 
10 Most ready-mixed concrete plants in the U.S. during my sample period were single-unit firms (though this 
fraction has been falling over time).  For example, 3749 firms controlled the 5319 ready-mixed plants operating in 
1987.  For simplicity, I assume each plant prices independently.  Thus I abstract from multiproduct pricing 
considerations that might arise if the same firm has two plants close to each other.  This assumption should be 
limited in impact due to the prominent role of single-unit establishments.  Furthermore, I include in a robustness 
check below a control for the market’s fraction of plants in multi-unit firms and find that this does not affect the 
results in any noticeable way. 
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output and employment shares within the industry are much smaller than one-third) exempted 

from most CM reporting requirements.  As such, these plants are not useful for my sample. 

Some further data cleaning is necessary.  Plant-level data contains occasional reporting 

and recording errors.  I remove the small number of gross outliers having prices greater than five 

times or less than one-fifth the median in a given year.  I further limit the sample to those plants 

with ready-mixed sales accounting for over one-half of yearly revenues.  Producers who do not 

specialize in concrete may be operating under different conditions than specialist producers in 

the same market, and as such may price differently due to product bundling considerations or 

simply because setting optimal prices is costly and the losses from small deviations from their 

profit-maximizing prices are smaller for these producers.  This sample criterion is not very 

restrictive in practice; most ready-mixed producers are specialists.  Indeed there is only one 

seven-digit product classified within the industry, and the average fraction of plant revenues 

from ready-mixed concrete sales is over 90 percent in the sample.11 

The final group of excluded establishments are those non-AR producers who happen to 

have (mostly because of incomplete reporting) physical quantities imputed by the Census 

Bureau.  Unfortunately, these imputes are not flagged.  To distinguish and remove imputed 

product-level data from my sample, I use the techniques described in detail in Supina (1994), 

Roberts and Supina (1996), and Foster, Haltiwanger, and Syverson (2003).12 

After removing gross outliers, unspecialized producers, and those with imputed output 

quantities, my final core sample includes 12,376 plant-year price observations. 

In some specifications below, I also use plant-level information on three factor prices 

computed using CM data.  One of these, a plant’s average salary (the producer’s total yearly 

wage bill, including supplements such as Social Security payments, divided by the number of 

employees) is available for almost every producer in the sample.  The other two are computed 
                                                 
11 Other products produced (usually in small amounts) by ready-mixed plants typically include pre-formed concrete 
products such as blocks and pipe. 
12 Complicating the detection of imputes is the fact that different imputation methods were used by the Census 
Bureau.  One imputation method involves calculating the average industry unit price (from establishments reporting 
both quantity and value data) and dividing the establishment’s reported value of production by this price.  These 
imputes can be eliminated by simply removing plant-year observations that are at the modal price for the year.  The 
second imputation algorithm is the “hot-deck” method.  This uses ratios of both plants’ total value of shipments and 
intermediate materials expenditures to payroll in order to assign imputed quantities to similar plants.  I identify hot-
deck imputes by finding plants with modal values of these two ratios and remove from the sample.  One should 
remain mindful, however, that these methods are imperfect for identifying imputed data given the absence of 
explicit identifiers. 
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from the CM materials supplement, which provides input price information for a subset of plants 

(3,452 plant-year observations, or 28 percent of the sample).  The materials supplement, like the 

CM product files, collects detailed product-level data by plant, except it covers intermediate 

material inputs rather than outputs.  Total annual purchases by material input as well as their 

physical quantities (when feasible) are collected.  For ready-mixed concrete plants, unit prices 

can be computed for two material inputs: cement and sand and gravel (sand and gravel are 

treated as a composite good by the Census Bureau).13  Despite the sparser coverage, this data 

allows me to isolate—at least in part—productivity selection’s effect on prices by controlling for 

across-market factor price differences. 

 

B. Local Markets and Demand Density in the Ready-Mixed Concrete Industry 

 The empirical work uses variations in demand density across geographic markets to 

identify the effect of spatial competition on the equilibrium price distribution.  This of course 

raises the issue of how to suitably define markets within the industry.  I use the Bureau of 

Economic Analysis’s Component Economic Area (CEA).  CEAs are collections of counties 

usually—but not always—centered on Metropolitan Statistical Areas (MSAs).  Counties are 

selected for inclusion in a given CEA based upon their MSA status, worker commuting patterns, 

and newspaper circulation patterns, subject to the condition that CEAs must contain only 

contiguous counties.  The selection criteria ensure that counties in a given CEA are economically 

intertwined.  This classification process groups the roughly 3200 U.S. counties into 348 markets 

that are mutually exclusive and exhaustive of the land mass of the United States.14 

The CEA-based market is a compromise between conflicting requirements.  Markets 

definitions should minimize interactions between producers in different markets.  While there are 

bound to be some cross-CEA concrete sales in reality, the high transport costs of the industry 

make this unlikely.  Detailed industry-level shipments data from the 1977 Commodity 

                                                 
13 These two intermediate materials account for approximately 30 percent (cement) and 15 percent (sand and gravel) 
of total reported industry materials costs.  (Though this likely understates their cost shares.  The plant data attributes 
a substantial portion of materials costs as “not specified by kind,” which almost surely includes cement and 
aggregate purchases for some plants that are unable or unwilling to break down reported purchases by specific type.)  
Total intermediate materials costs average about 60 percent of industry revenue.  The wage bill accounts for another 
20 percent or so.  Thus with these three inputs I am able to control for prices of inputs whose costs comprise about 
half of the industry’s total revenue.  Note that while often interchanged colloquially, cement is not synonymous with 
concrete.  Instead, cement is a single albeit important input into concrete production. 
14 See Johnson (1995) for more detailed information about CEA creation. 

 9



 

Transportation Survey support this.  Ready-mixed plants shipped 94.4 percent (by weight) of 

their total output less than 100 miles.  Discussions with industry managers also offer anecdotal 

evidence along these lines; stated maximum ideal delivery distances were between 30- and 45-

minute drives from the plant.  (An additional factor minimizing cross-market shipments is that 

most CEA boundaries are in outlying parts of urban areas and are thus less likely to be near areas 

heavily populated with concrete plants.)  CEAs are also not required to adhere to state 

boundaries, which would sometimes place unwarranted market boundaries in economically 

interconnected areas.  Of course, markets should not be so large that the plants they contain do 

not respond to the same market forces, either external or caused by the actions of industry 

competitors.  CEAs are a suitable compromise to resolve the tension between isolating markets 

yet ensuring the producers within them are interconnected. 

 The key exogenous variable in the model is demand density.  To measure this 

empirically, I use the log of the number of construction-sector workers per square mile in the 

CEA-year market.  Construction sector employment is obtained from County Business Patterns 

data aggregated at the CEA level.15  Land areas are from the City and County Data Book.  As 

discussed above, construction sector employment density is arguably an exogenous demand-

density shifter because, while the sector buys most of the ready-mixed concrete industry’s 

output, concrete’s cost share in total construction costs is quite small. 

 

IV. Empirical Specification 

The theory implies higher demand density should decrease the maximum, central 

tendency, and (given some regularity conditions on the distribution) dispersion of prices in the 

local market.  This suggests a simple empirical model: 

itcitcitdit BXdensy εββ +++= ,0  

                                                 
15 County Business Patterns data occasionally have missing observations due to data disclosure regulations.  This is 
a small matter in the case of the construction sector (SICs 15-17), however.  The sector’s ubiquity and abundance of 
small firms allows full disclosure of total employment in nearly all counties (employment data is withheld in 
roughly 1.5 percent of the county-year observations in my sample).  I impute employment when missing by 
multiplying the number of establishments in each of nine employment ranges (which are always reported) by the 
midpoint of their respective employment ranges, and summing the result.  The impact of using imputes is likely to 
be even less than their proportion indicates, as the typically small nondisclosure counties are less likely to contain 
non-AR ready-mixed plants. 
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where yit is a moment of the price distribution for market i in year t, densit is the corresponding 

value of demand density, Xc,it is a vector of (possibly time-varying) local market conditions that 

might also influence price moments, and εit a disturbance term.  The coefficient on demand 

density, βd, is the estimate of interest. 

 I use six empirical moments of local price distributions as dependent variables, two each 

to measure the upper bound, central tendency, and dispersion of the distribution.  The upper-

bound price measures offer the most direct test of the hypothesized cost-selection truncation and 

shaping of the price distribution.  The maximum price is the most obvious measure to use, but it 

is also the moment most vulnerable to outliers.  Therefore I also run specifications using the 90th 

percentile price.  This equals the maximum price in markets with fewer than 10 observable 

prices, but it does remove the influence of outliers in large markets.  The two central tendency 

moments are the median and the physical-output-weighted average prices.  The former is used 

for its robustness to outliers and the latter to better capture the average transaction price in the 

market by giving more weight to producers who sell more output.  The dispersion measures are 

the interquartile and 90-10 percentile ranges. 

 The local demand controls in Xc,it include an assortment of variables that plausibly shift 

the demand structure of the local ready-mixed concrete market through channels other than the 

spatial substitutability influence of demand density.16  These include demographics of the CEA: 

the percentage of the population that is nonwhite, the fraction over 25 years old, the proportion 

with at least a bachelor’s degree, and the number of marriages per 1000 population.  Each of 

these variables is aggregated from values in the 1988 City and County Data Book.  The race and 

the marriage variables constructed from 1984 data, while the others are from the 1980 population 

census.  I also include variables conceivably correlated with concrete demand specifically: the 

fraction of households owning at least two automobiles, the fraction of housing units that are 

owner-occupied, the median value of owner-occupied housing, and median personal income 

(also from 1980 and 1984).  The output-weighted average specialization ratio (that is, the 

fraction of plant revenue from ready-mixed) in the market is included to control for any 
                                                 
16 Of course, these other influences will not necessary bias the demand density results in the simpler specifications if 
they are orthogonal to my measure of demand density.  It seems possible, however, that some of these control 
variables independently influence both local ready-mixed market structure and the overall level of construction 
activity (which is a key element of the demand density measure).  Due to data limitations, some of these measures 
are CEA-specific but not CEA-year-specific.  In these cases, I have attempted to use values gathered as close to the 
middle of the sample period as possible. 
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systematic differences in specialization across markets.  Finally, I also add the growth rate of 

local construction employment over the previous five years to control for short-term effects (e.g., 

a transient construction boom that allows relatively high-priced producers to temporarily 

operate).  Because demand growth is included in the control vector, specifications where controls 

are included use only market-level price moments from 1982, 1987, and 1992. 

 

V. Empirical Results—Price Distributions 

A. Benchmark 

 Table 1 contains summary statistics for the key variables in my regressions.  The price 

moments reported in the table are calculated at the CEA-year market level.  The main sample 

uses only those markets in which I observe at least five producers’ prices, though I show below 

that the basic results are robust to changes in this cutoff.  As can be seen in the table, prices vary 

both within and across markets in the industry.  The average within-market interquartile range is 

roughly 10 percent, and the variation across markets in this within-market dispersion measure is 

8 percent.  The 90-10 percentile range indicates that price variations on the order of 25 percent 

are not unusual within markets.  The central tendency moments indicate the average median 

concrete price in a market is $45.56 per cubic yard (in 1987 dollars), and the output-weighted 

average is roughly the same.  These also vary across markets, with standard deviations of 

roughly seven and ten percent for the median and output-weighted mean, respectively.  The 

measures of the upper-bound prices are mover volatile still, with the maximum price (whose 

average is $54.71) having a standard deviation of around 20 percent.17 

 Table 2 presents the benchmark estimates.  The table shows the local demand density 

coefficient obtained when each of the six local price distribution moments are regressed on 

density and, if applicable, the other covariates.  (I report only the demand density coefficients 

here for the sake of brevity, though I report the qualitative nature of the covariate estimates 

below.)  Price moments are listed by rows, and columns denote different sets of regressors in 

Xc,it. 

Consider first the results from column 1, which come from specifications that regress the 

price moments on demand density and a set of year dummies.  The correlations between demand 

                                                 
17 Pooling all price observations together into a single distribution yields a (geometric) mean price level of $45.20 
with a standard deviation of about 15 percent.  Thus, not surprisingly, prices are more variable across producers than 
are the central tendencies of price distributions across markets. 
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density and price moments are in directions consistent with the theoretical framework.  Increases 

in demand density are associated with declines in each price moment.  This negative effect is 

significant in four of the six cases. 

When the demand controls are added in column 2, the implied negative connection 

between demand density and the price moments becomes even stronger.  All six coefficients rise 

in magnitude, particularly demand density’s downward influence on the maximum price in the 

market, which is now significant.  (The impact on the interquartile range remains insignificant 

despite the larger coefficient.)  The size of the effects implied by these coefficients seems, at 

least for the upper bound and central tendency results, economically relevant.  For example, a 

one standard deviation increase in density (a change equivalent to an increase from 1.6 

construction workers per square mile—the geometric mean density across markets in the 

sample—to 6.7 workers per square mile) corresponds roughly to a 6 percent drop in the 

maximum market price.  This is one-third of its across-market standard deviation and implies a 

drop in the maximum price of $3.15 when evaluated from its mean.  The same density shift 

implies a similarly sized 7 percent fall in the 90th percentile price.  The median (output-weighted 

average) price would expectedly drop 1.6 percent (3.2 percent), or about one-fourth (one-third) 

of a standard deviation, in response to this density increase.  In levels this means the 75th-

percentile density market should have a median (output-weighted average) price $0.63/yd3 

($1.69/yd3) lower than the 25th percentile market (this assumes median and weighted average 

prices are distributed symmetrically across markets, as seems reasonable given the skewness 

values reported in Table 1).  The implied effects on within-market price dispersion are weaker, 

with a one standard deviation density increase implying decreases in the interquartile and 90-10 

percentile ranges of 0.7 and 1.3 percent, respectively, or about one-twelfth of their standard 

deviations. 

Panel B of Table 2 reports the qualitative features of the demand covariates estimates 

from the full-model specifications in column 2.  While the effects of many of the controls change 

across price moments, perhaps the most consistent result is the positive correlation between price 

levels and the median household income in the market (its coefficient is positive and significant 

for all the upper bound and central tendency moments).  This is not altogether surprising; many 

goods are more expensive in higher-income areas, and building materials are unlikely to be an 

exception to this.  Prices seem to be lower in markets with high rates of owner-occupied housing.  
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Price dispersion is lower in 1992 than other years, and in markets with more specialized 

producers.  Demand growth is only significant for two of the price moments; it seems that short-

run effects of changing market sizes do not have great impacts on the shapes of equilibrium price 

distributions. 

The results from the benchmark specification are largely consistent with theory.  Upper-

bound prices are lower in denser markets.  This truncation suggests that cost-based selection in 

the presence of heterogeneous producers plays an important role in determining equilibrium 

prices.  Selections’ impact also appears to carry over into average prices in the market, which are 

lower in high-density markets.  There is some support for the implication that prices are less 

disperse in denser markets as well, although this appears to be concentrated in the tails of the 

distribution and the quantitative impact in economic terms is small.  Note that even in the 

specifications that include demand covariates, most of the across-market variation in price 

moments remains unexplained.  Hence cost-based selection, while having non-negligible effects, 

is hardly the complete story on price variation within an industry. 

 

B. Robustness—Independence of Density and Size 

The discussion above states implies that in markets where spatial competition is 

important, it is density specifically, rather than just market size, that drives cost-based selection 

and the resulting price distribution effects.  I can test whether the size-density distinction holds 

empirically with a specification that includes both demand density and demand size (logged 

construction employment in the local market).  The results are shown in column 2 of Table 3, 

which corresponds to the benchmark specifications (with all demand controls included) in Table 

2 but with the additional market size control added. 

 The demand density coefficients retain their negative signs in all cases as well as the 

benchmark results’ patterns of significance.  Their magnitudes, with the exception of the 

coefficient in the maximum price regression, do decline slightly.  The coefficients on market size 

(not shown) are somewhat erratic, while negative in four cases—the 90th percentile price, median 

price, and the two dispersion moments—they are significant only in the former two cases.  

Moreover, they are significant and positive in the maximum and output-weighted average price 

regressions.  While one must be mindful that these coefficients reflect only the effect of size 

variation that is orthogonal to density variation, it is unusual that size would have an oppositely 
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signed (and significant) impact on two moments meant to measure the same shape attributes of 

the price distribution. 

 The results of this exercise indicate that despite the obvious link between market density 

and size, much of density’s impact is independent of size effects.  Thus spatial substitutability 

specifically, and not just overall size, shapes the cost and price distributions of market 

establishments. 

 

C. Robustness—Nonlinear Density Effects 

To see if demand density’s impact on the price distribution is nonlinear, I estimate a 

specification that includes the square of demand density as a covariate.  The results are in 

column 3 of Table 3.  There is very little difference between these results and those from the 

benchmark estimation.  Three of the coefficients do not change at all to at least three decimal 

places, and the remaining rise insignificantly.  The unreported quadratic density coefficients are 

positive for every price moment, though only significant in the case of the 90th percentile price 

level and the two central tendency moments.  So while the impact of demand density may fade 

somewhat at higher density levels, this effect is quantitatively weak. 

 

D. Robustness—Sample Market Selection Criteria 

For inclusion in my benchmark sample, I require that a market has at least five ready-

mixed producers with non-imputed price data.  Here I check to see if changing this exclusion 

criterion affects the results.  Columns 4 and 5 of Table 3 show the demand density coefficients 

obtained when the cutoff levels for the minimum number of plants are instead (respectively) two 

and ten.  Of course, the sample size is larger in the former case (927 markets meet the looser 

requirement) and smaller in the latter (318 markets). 

Under either alternative exclusion condition, the results largely coincide with the 

benchmark results.  Demand density’s estimated negative impacts on the median price and 

interquartile price range rise in magnitude somewhat in the two-plant-minimum sample, but little 

else changes substantially.  This characterization also holds for the ten-plant-minimum sample, 

except there is no corresponding increase in the size of the density coefficient; indeed, it falls 

slightly.  This rise in the small-market sample and fall in the larger-market sample may be a 

manifestation of the weak nonlinearity in density’s influence discussed above. 
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E. Robustness—Multi-unit Firms 

As noted above, the theoretical framework assumes that each production unit prices 

independently, as if it is its own profit-maximizing unit.  However, multiproduct firms when 

making optimal pricing decisions account for the ability of their products to cannibalize each 

others’ market shares.  In the case of ready-mixed concrete, firms that own several plants in a 

single market would be expectedly be taking such considerations into account when setting 

prices.  Thus the implications for shifts in the shape of the price distribution discussed above 

may not necessarily obtain.18 

Such concerns are tempered in this industry (at least during the sample period) because, 

as discussed previously, most of the establishments are the only concrete plant of their owning 

firm.  However, those plants with price available data are more likely to be larger (and thus more 

likely to be a part of a multi-unit firm), so my sample contains a greater fraction of multi-unit 

establishments than is their overall proportion.  As a straightforward check for their influence, I 

estimate a specification where I include in Xc,it the fraction of market establishments that belong 

to a multi-unit firm.  The results are reported in column 6 of Table 3. 

There is very little difference between these regressions and the benchmark findings.  

Any changes observed in the demand density coefficients are miniscule.  Multi-unit firm pricing 

does not seem to have any great impact on how equilibrium price distributions change with 

demand density in this industry. 

 

F. Robustness—Density Measure 

 The demand density measure simply divides total construction sector employment in a 

market by the area of the market.  Both of these components are aggregated from the county 

level.  A sensible alternative measure would aggregate the county-level densities in a market by 

weighting them by the counties’ construction sector employment.  I construct this alternative 

demand density measure and use it in the specification reported in column 7 of Table 3. 

 The qualitative patterns of the benchmark results remain, with the exception of the 

outcomes from the maximum price regression, where the density coefficient is positive and 
                                                 
18 It is not clear which direction multi-unit firm pricing decisions will alter the observed patterns from those implied 
by the theory.  Presumably, a market dominated by a multi-unit producers would exhibit less price variation.  The 
impact on the upper-bound and average prices vis-à-vis the single-unit scenario is not obvious. 
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insignificant.  Since both density measures have roughly equal standard deviations, the smaller 

coefficients in this specification indicate that the implied impact of the alternative demand 

density measure is smaller than that of the benchmark.  

 

G. Robustness—Input Price Effects 

One possible concern regarding the above results is that they reflect patterns in input 

price variations, rather than differences in true technical efficiency levels.  While selection 

among heterogeneous producers in fact depends on cost differences regardless of whether they 

are sourced from input prices or efficiency, most models abstract from such distinctions.  Thus it 

is possible that the patterns observed above, particularly those regarding the demand density’s 

effect on the upper bounds and central tendencies of local price distributions, obtain because 

simply because input prices are lower in dense markets rather than selection being more 

stringent.  However, I observe three plant-specific input prices for a subset of my data: (the 

composite) sand and gravel, cement, and labor (using the average salary).  I use these to separate 

the influence of productivity selection from factor price differences. 

The broad patterns seen in these input prices yield mixed implications about their 

possible influence on the results above.  Table 4 contains a host of descriptive statistics obtained 

using the subsample of establishments for which I observe these input prices.  Panel B contains 

the correlations among plant-level prices.  Not surprisingly, producers that pay more for their 

intermediate inputs charge higher prices; higher sand/gravel and cement prices are positively 

correlated with output price.  However, average salary is negatively correlated with the ready-

mixed price of the producer.19  None of these correlations say anything about the relationship 

between demand density in a market and the relationship between input and output prices, 

however. 

                                                 
19 Some further discussion of these input prices is appropriate.  Some ready-mixed concrete producers mine sand 
and gravel on the factory site.  Producers who obtain all of such inputs on site will not be included in the input-price 
subsample, since plants report only materials purchases from other establishments (though these other plants could 
be owned by the same firm, in which case they are still to report the “full economic value” of the materials 
purchases as with purchases from arms-length suppliers).  While I do not directly observe if producers have on-site 
mining operations, the vast majority of industry plants have materials’ revenue shares that are narrowly distributed 
around the industry average share.  Given that gravel and stone are major intermediate inputs, materials costs at 
these levels suggest on-site mining is the exception rather than the rule.  As for the average salary measure, I am of 
course abstracting from the possibility that wage variation reflects differences in the quality of labor inputs.  It is 
possible, for example, that higher-wage workers work at more productive establishments who are still able to pass 
along the resulting cost advantage to their customers in lower prices. 
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To see this relationship more directly, consider the correlation coefficients reported in 

Panel C of Table 4.  The panel show the covariance patterns between a market’s demand density 

and the median of observed input and output prices in the market.  The plant-level comovement 

between output and input prices seen above is reflected in the patterns of market medians.  

However, consider the correlations between these prices and demand density.  While as with 

ready-mixed, cement tends to be less expensive in denser markets, sand and gravel prices as well 

as average salaries are higher.  Therefore at first glance it seems unlikely that the lower ready-

mixed prices observed in denser markets arise simply as the result of lower input costs. 

To more rigorously test for this invariance of the key results to input price variation, I 

rerun the benchmark models, now including the input price moments corresponding to the ready-

mixed price moment used as the dependent variable.  That is, the interquartile ranges of cement, 

sand and gravel, and average salary are included in the interquartile price dispersion regressions, 

the median input prices in the median regressions, and so on.  The results are presented in Table 

5.20 

Column 1 presents the results from the specification that excludes all demand controls 

but year dummies, while column 2 contains the full-covariate model results.  Notice first the 

correspondence between input and output price moments.  The results observed in the median 

correlations above remain prevalent in this specification.  In every case, a higher input price 

moment in a market corresponds to an increase in the same moment of ready-mixed prices, and 

this effect is statistically significant in virtually every instance as well.  Even average salaries, 

despite having raw correlations that suggest a negative comovement with ready-mixed price 

levels, have a positive impact once I control for demand density and the other input price 

moments.  It appears that these input price controls do absorb ready-mixed price variation arising 

from input cost differences. 

The demand density coefficients now capture the density effects on the equilibrium price 

distribution that are independent of major input price differences.  The results in Table 5 indicate 

that the relationships seen in the benchmark results remain.  The demand density coefficients are 

                                                 
20 The results in this table and in the reported market-level correlations in Table 4 are obtained from a sample 
comprised of the 575 market-year observations for which I observe at least two plants with both output and input 
price data.  I use this smaller minimum-producer cutoff here because of the sparser coverage of the input price data.  
Results using the five-producer cutoff of the benchmark specification (which cuts the sample down to just over 200 
market-year observations rather than the 575 here) were roughly equivalent in magnitude to those reported below, 
but not surprisingly less precisely estimated and as such were less likely to be statistically distinguishable from zero. 
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negative in all regressions but one.  They are significant for the upper bound and central 

tendency moments, while insignificant for the dispersion moments.  Considerably larger impacts 

are implied for median and output-weighted average prices here.  This likely results because the 

input price moments control for the unconditional positive correlations between demand density, 

average salary, and sand and gravel prices, that would otherwise tend to bias downward the 

estimated impact of demand density on average ready-mixed prices. 

Therefore it appears that demand density’s shaping of the equilibrium price distribution 

arises from selection on more efficient producers, as theorized, and not merely through 

coincidental relationships between density and input prices.  Indeed, its impact on the central 

tendency of the price distribution is larger once the influence of input prices is accounted for. 

 

VI. Discussion and Conclusion 

This paper has explored how differences in the intensity of spatial competition across 

markets are manifested in equilibrium prices.  Standard models predict that, ceteris paribus, price 

should fall as producer density (the number of producers per unit area), since this raises 

substitution possibilities for consumers and lowers optimal markups.  I find empirical support for 

this in a case study of the ready-mixed concrete industry: average prices are lower in denser 

markets. 

However, I also find that there are considerable within-market price differences, and that 

this dispersion as well as upper bound prices also fall with density.  These observations cannot 

be explained by homogeneous-producer models of competition that are commonly appealed to 

(even if noisy price measurement is present).  On the other hand, heterogenous-producer models 

where production costs differ are able to account for the empirical patterns.  These models imply 

a competition-driven selection effect on equilibrium prices that is absent from homogeneous-

producer frameworks.  As more intense competition drives out high-cost producers, upper-bound 

prices, average prices, and price dispersion all decline, as seen in the data. 

An advantage of testing for these effect in the ready-mixed concrete industry is that the 

measured price differences are in response to changes in concrete demand density, which is an 

arguably exogenous shifter of the intensity of competition across local concrete markets.  Thus 

the price effects of competition seen here can be reasonably seen to be causal.  The responses are 

economically nontrivial and robust to several alternative empirical modeling assumptions.  
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Furthermore they do not simply result from across-market differences in input price 

distributions, suggesting that selection on actual efficiency differences drives the connection 

between the equilibrium cost and price distributions. 

 While these empirical results were derived using data from a single industry, they seem 

likely to apply more generally.  The spatial nature of competition that dominates the ready-mixed 

concrete industry is also important in many other industries.  Indeed, spatial competition is 

probably weaker in manufacturing industries than in the service, retail, or wholesale trades, 

where the mechanisms explored here could are likely to play an even larger role.  Furthermore, 

the body of evidence showing producer cost heterogeneity exists and is important to describing 

plant and firm survival continues to grow.  The presence of cost-based selection means the link 

between competition and market prices that has been the focus of a large literature is likely to go 

beyond average price effects alone. 

 Still, much is left to be learned about the connection between the intensity of competition 

and the shape of the equilibrium price distribution.  The empirical models here leave a large 

amount of the across-market variation in price moments unexplained.  Surely some of this is due 

to the coarse nature of the spatial measures—average market density measures rather than 

detailed, location-specific interactions—and could be reconciled with more detailed data.  There 

are also likely other ways (often not measurable) that product differentiation arises, such as 

variation in the services that come bundled with manufactured outputs, that may explain some of 

remaining variation.  These areas seem ripe for future research. 

 

 20



 

References 
 
Asplund, Marcus and Volker Nocke, “Firm Turnover in Imperfectly Competitive Markets,” Penn 

Institute for Economic Research Working Paper 03-010, 2003. 
 
Baily, Martin Neil, Charles Hulten, and David Campbell. “Productivity Dynamics in 

Manufacturing Plants.” Brookings Papers on Economic Activity. Microeconomics, 
1992, 187-249. 

 
Beaulieu, Joe and Mattey, Joe. “The Effects of General Inflation and Idiosyncratic Cost Shocks 

on Within-Commodity Price Dispersion: Evidence from Microdata.” Review of 
Economics and Statistics, 81(2), 1999, pp. 205-16. 

 
Bils, Mark, Peter J. Klenow, and Oleksiy Kryvtsov. “Sticky Prices and Monetary Policy 

Shocks.” Federal Reserve Bank of Minneapolis Quarterly Review, 27(1), 2003, 1-9. 
 
Bresnahan, Timothy F. and Peter C. Reiss. “Entry and Competition in Concentrated Markets.” 

Journal of Political Economy, 99(5), 1991, 977-1009. 
 
Brown, Jeffery R. and Austan Goolsbee. “Does the Internet Make Markets More Competitive? 

Evidence from the Life Insurance Industry.” Journal of Political Economy, 110(3), 2002 , 
481-507. 

 
Chevalier, Judith and Austan Goolsbee. “Price Competition Online: Amazon Versus Barnes and 

Noble.” Quantitative Marketing and Economics, 1(2), 2003, 203-222. 
 
Dunne, Timothy, Mark J. Roberts, and Larry Samuelson. “The Growth and Failure of U.S. 

Manufacturing Plants.” Quarterly Journal of Economics, 104(4), 1989, 671-698. 
 
Foster, Lucia, John Haltiwanger, and C. J. Krizan. “The Link Between Aggregate and Micro 

Productivity Growth: Evidence from Retail Trade.””NBER Working Paper 9120, 2002. 
 
Foster, Lucia, John Haltiwanger, and Chad Syverson. “Reallocation, Firm Turnover, and 

Efficiency:  Selection on Productivity or Profitability?.” Working Paper, 2003. 
 
Hopenhayn, Hugo A., “Entry, Exit, and Firm Dynamics in Long Run Equilibrium,” 

Econometrica, 60(5), 1992, 1127-1150. 
 
Johnson, Kenneth P. “Redefinition of the BEA Economic Areas.” Survey of Current Business, 

75(2), 1995, 75-81. 
 
Kashyap, Anil K. “Sticky Prices: New Evidence from Retail Catalogs.” The Quarterly Journal 

of Economics, 110(1), 1995, 245-274. 
 
Lach, Saul. “Existence and Persistence of Price Dispersion: An Empirical Analysis.” Review of 

Economics and Statistics, 84(3), 2002, 433-444. 

 



 

 
Melitz, Marc J., “The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry 

Productivity,” Econometrica, 71(6), 2003, 1695-1725. 
 
Ohta, H. “The Price Effects of Spatial Competition.” Review of Economic Studies, 48(2), 1981, 

317-325. 
 
Olley, Steven G. and Pakes, Ariel. “The Dynamics of Productivity in the Telecommunications 

Equipment Industry.” Econometrica, 64(4), 1996, pp.1263-97. 
 
Roberts, Mark J. and Dylan Supina. “Output Price, Markups, and Producer Size.” European 

Economic Review, 40(3-5), 1996, 909-921. 
 
Salop, Steven C. “Monopolistic Competition with Outside Goods.” Bell Journal of Economics, 

10(1), 1979, 141-156. 
 
Sorensen, Alan T. “Equilibrium Price Dispersion in Retail Markets for Prescription Drugs.”  

Journal of Political Economy, 108(4), 2000, 833-850. 
 
Supina, Dylan. “Price and Markup Dispersion Among U.S. Manufacturing Plants.” Ph.D. 

Dissertation, Pennsylvania State University, 1994. 
 

Syverson, Chad. “Market Structure and Productivity: A Concrete Example.” Journal of Political 
Economy, Forthcoming, 2004a. 

 
Syverson, Chad. “Product Substitutability and Productivity Dispersion.” Review of Economics 

and Statistics, 86(2), 2004b, 534-550. 
 
U.S. Bureau of Labor Statistics.  Trends in Multifactor Productivity, 1948-81. Bulletin 2178, 

Washington, DC: Government Printing Office, 1983. 
 
 
 

 



 

Table 1: Descriptive Statistics 
 

Variable Mean Std. Dev. Skewness IQ Range 90-10%ile
Maximum Price 4.002 0.190 2.587 0.205 0.376 

90th Percentile Price 3.942 0.149 3.378 0.154 0.299 
Median Price 3.819 0.067 0.386 0.040 0.129 

Output-Weighted Avg. Price 3.808 0.100 -1.790 0.095 0.210 
Price Dispersion (IQ Range) 0.093 0.081 1.746 0.098 0.182 

Price Dispersion (90-10 Range) 0.242 0.185 2.804 0.172 0.354 
Demand Density 0.491 1.413 0.118 1.704 3.552 

exp(Demand Density) 4.728 11.14 6.083 3.120 10.13 
(Demand Density)2 2.235 3.434 2.682 2.812 6.331 

Demand 9.233 1.041 0.353 1.563 2.712 
Alt. Demand Density Measure 1.741 1.458 0.018 2.039 3.878 

      
Ready-Mixed Price Level 

(12,376 plants), $1987 45.68 7.045 4.815 3.134 12.66 

Ready-Mixed Logged Price 
(12,376 plants), $1987 3.811 0.143 -0.452 0.069 0.277 

 
Notes: This table reports descriptive statistics for the primary variables of interest in empirical 
tests below.  Unless otherwise noted, statistics are computed across the 795 market-year 
observations in the core sample.  Note that price moments are computed from local logged price 
distributions; for example, the average (across market-years) of within-market interquartile 
logged price ranges is 0.093.  Demand density is measured as the log of the number of 
construction sector employees per square mile in a market-year (the alternative density measure 
is an employment-weighted average of county-level densities in the market-year).  Demand is 
simply the logged number of construction sector employees. 
 
 

 



 

Table 2. Benchmark Results—Local Price Distribution Moments 
 
A. Demand Density Coefficients 
 

Dependent Variable Statistic [1] [2] 
R2 0.014 0.107 

Maximum Price Demand Density -0.004 
(0.006) 

-0.042* 
(0.010) 

    
R2 0.049 0.144 

90th Percentile Price Demand Density -0.018* 
(0.005) 

-0.047* 
(0.009) 

    
R2 0.096 0.122 

Median Price Demand Density -0.006* 
(0.002) 

-0.011* 
(0.003) 

    
R2 0.059 0.089 Output-Weighted 

Average Price Demand Density -0.009* 
(0.003) 

-0.022* 
(0.005) 

    
R2 0.000 0.121 Price Dispersion 

(Interquartile Range) Demand Density -0.000 
(0.003) 

-0.005 
(0.008) 

    
R2 0.051 0.117 Price Dispersion 

(90-10 Range) Demand Density -0.011* 
(0.005) 

-0.026* 
(0.010) 

    
Year Dummies  Yes Yes 

Demand Controls  No Yes 
 
Notes: This panel shows the estimated coefficients on demand density when various moments of 
the local price distributions are regressed on demand density and (when applicable) a set of 
demand controls.  Specifications are by column and dependent variables by row.  The sample 
consists of 795 region-year observations (609 in the specification that includes demand 
controls—see text for details) with at least five plants for which I have non-imputed output price 
data.  Reported standard errors are robust to heteroskedasticity, and an asterisk denotes 
significance at the 5 percent level.  

 



 

B. Significance of Demand Controls 
 

Dependent Variable Negative and Significant Positive and Significant 
Maximum Price Married, Autos2 MedIncome 

   
90th Percentile Price Married, Occup, Autos2 MedIncome 

   

Median Price 1992 Dummy, Occup, 
MedHouse 

Over25, MedIncome, Demand 
Growth 

   
Output-Weighted 

Average Price Occup Over25, MedIncome 

   
Price Dispersion 

(Interquartile Range) 
1992 Dummy, Spec, Demand 

Growth 1987 Dummy 

   
Price Dispersion 
(90-10 Range) 

1992 Dummy, Nonwhite, 
Over25, Auto2, Spec 1987 Dummy, MedIncome 

  
Notes: This panel shows, by dependent variable, the significance of the demand controls 
included in the specification corresponding to column 2 in panel A.  All demand controls are 
included in each regression; those not reported were statistically insignificant. 
 
Key to Demand Controls: 
Married—Fraction of population that is married 
Nonwhite—Fraction of population that is non-white 
College—Fraction of population with college education 
Over25—Fraction of population over 25 years old 
MedIncome—Logged median household income 
Auto2—Fraction of households with at least two cars 
Occupied—Fraction of owner-occupied housing units 
MedHouse—Logged value of median home 
Demand Growth—Demand growth over past 5 years (log change in construction sector 
employees) 
Spec—Output-weighted average revenue share of ready-mixed concrete among concrete plants  

 



 

Table 3. Robustness Checks 
 

Dependent Variable Statistic or Coefficient [1]       [2] [3] [4] [5] [6] [7]
R2 0.107       0.134 0.114 0.184 0.123 0.108 0.078

Maximum Price 
Demand Density -0.042* 

(0.010) 
-0.056* 
(0.011) 

-0.044* 
(0.010) 

-0.040* 
(0.007) 

-0.043* 
(0.015) 

-0.043* 
(0.010) 

0.004 
(0.008) 

         
       

  
       

  
       

  
       

       
       

R2 0.144 0.154 0.162 0.145 0.247 0.144 0.106
90th Percentile Price Demand Density -0.047* 

(0.009) 
-0.041* 
(0.010) 

-0.050* 
(0.009) 

-0.046* 
(0.007) 

-0.041* 
(0.010) 

-0.047* 
(0.009) 

-0.029* 
0.007) 

R2 0.122 0.134 0.132 0.114 0.244 0.122 0.117
Median Price 

Demand Density -0.011* 
(0.003) 

-0.007* 
(0.003) 

-0.011* 
(0.004) 

-0.018* 
(0.004) 

-0.009* 
(0.004) 

-0.010* 
(0.003) 

-0.008* 
(0.003) 

R2 0.089 0.108 0.114 0.078 0.235 0.092 0.077
Output-Weighted 

Average Price Demand Density -0.022* 
(0.005) 

-0.016* 
(0.005) 

-0.024* 
(0.005) 

-0.026* 
(0.004) 

-0.022* 
(0.007) 

-0.021* 
(0.005) 

-0.016* 
(0.004) 

R2 0.121 0.121 0.127 0.094 0.256 0.126 0.119
Price Dispersion 

(Interquartile Range) Demand Density -0.005 
(0.008) 

-0.004 
(0.008) 

-0.005 
(0.008) 

-0.014 
(0.008) 

-0.014 
(0.012) 

-0.006 
(0.008) 

-0.001 
(0.004) 

  

R2 0.117 0.117 0.118 0.085 0.243 0.117 0.111
Price Dispersion 
(90-10 Range) Demand Density -0.026* 

(0.010) 
-0.025* 
(0.010) 

-0.026* 
(0.010) 

-0.024* 
(0.008) 

-0.019 
(0.010) 

-0.026* 
(0.009) 

-0.015* 
(0.007) 

Notes: This panel shows results from various robustness checks.  Year and demand controls are included in all specifications.  Unless 
otherwise noted, sample consists of 609 CEA-year observations.  Reported standard errors are robust to heteroskedasticity, and an 
asterisk denotes significance at the 5 percent level.  The key to specifications by column: [1] benchmark results (for comparison 
purposes); [2] including market size control; [3] including quadratic density term; [4] 2-plant minimum for market-year cells, (927 
observations); [5] 10-plant minimum for market-year cells, (318 observations); [6] multi-plant firm share included; [7] CEA density is 
population-weighted average county density 

 



 

Table 4. Descriptive Statistics from Subsample with Available Input Prices 
 
 
A. Summary Statistics for Input Price Sample 
 

Price Mean SD Skewness IQ Range 90-10%ile 
Ready-Mixed 46.155 7.700 1.894 7.859 16.879 
Sand & Gravel 6.377 2.316 1.047 3.047 5.533 

Cement 58.570 12.663 2.467 14.958 27.913 
Avg. Salary 22.114 9.688 1.055 12.299 23.288 

 
Notes: This panel shows descriptive statistics for the 3452 plant-year observations for which I 
observe all three input prices (sand/gravel, cement, and average salary). 
 
 
B. Plant-Level Prices, Correlation Coefficients 
 

 Ready-Mixed Sand & Gravel Cement Avg. Salary 
Ready-Mixed 1    
Sand & Gravel 0.120 1   

Cement 0.220 0.011 1  
Avg. Salary -0.067 -0.106 -0.102 1 

 
Notes: This panel shows simple correlations between output and input prices across 3452 plant-
year observations.  All prices are in logarithms of 1987 dollars. 
 
 
C. Demand Density and Market-Level Median Prices, Correlation Coefficients 
 

 Demand Dens. Ready-Mixed Sand & Gravel Cement Avg. Salary 
Demand Density 1.000     

Ready-Mixed -0.143 1.000    
Sand & Gravel 0.110 0.184 1.000   

Cement -0.242 0.345 -0.045 1.000  
Avg. Salary 0.326 -0.014 -0.136 -0.115 1.000 

 
Notes: This panel shows simple correlations between demand density and median prices (output 
and inputs) across the 575 market-year observations that include at least two producers with all 
input price data available.  All prices are in logarithms of 1987 dollars. 
 
 

 



 

Table 5. Controlling for Input Price Moments 
 

Dependent Variable Statistic or Coefficient [1] [2] 
R2 0.192 0.238 

Demand Density -0.016* 
(0.005) 

-0.044* 
(0.009) 

Sand and Gravel 0.085* 
(0.020)

0.085* 
(0.031)

Cement 0.168* 
(0.044)

0.155* 
(0.053)

Maximum Price 

Salary 0.127* 
(0.021) 

0.125* 
(0.040) 

    
R2 0.187 0.236 

Demand Density -0.017* 
(0.005)

-0.045* 
(0.008)

Sand and Gravel 0.080* 
(0.019)

0.075* 
(0.031)

Cement 0.166* 
(0.037)

0.161* 
(0.048)

90th Percentile Price 

Salary 0.119* 
(0.021)

0.111* 
(0.042)

    
R2 0.209 0.262 

Demand Density -0.017* 
(0.005)

-0.037* 
(0.009)

Sand and Gravel 0.093* 
(0.016)

0.085* 
(0.022)

Cement 0.183* 
(0.044)

0.148* 
(0.063)

Median Price 

Salary 0.103* 
(0.020) 

0.086* 
(0.029) 

    
Year Dummies  Yes Yes 

Demand Controls  No Yes 
 
Notes: This table shows results obtained when input-price moments are included in the output-
price-moment regressions (coefficients for covariates have been suppressed).  The sample 
consists of 575 region-year observations (362 in the specification that includes demand controls) 
with at least two plants for which I have non-imputed output and input price data.  Reported 
standard errors are robust to heteroskedasticity, and an asterisk denotes significance at the 5 
percent level. 

 



 

 

Table 5 (continued). Controlling for Input Price Moments 
 

Dependent Variable  [1] [2] 
R2 0.131 0.159 

Demand Density -0.016* 
(0.006)

-0.040* 
(0.011)

Sand and Gravel 0.093* 
(0.019)

0.099* 
(0.027)

Cement 0.168* 
(0.043)

0.144* 
(0.059)

Output-Weighted 
Average Price 

Salary 0.086* 
(0.022) 

0.072 
(0.037) 

    
R2 0.055 0.087 

Demand Density -0.000 
(0.004) 

-0.015 
(0.010) 

Sand and Gravel 0.068* 
(0.022)

0.067* 
(0.034)

Cement 0.175* 
(0.067)

0.164* 
(0.081)

Price Dispersion 
(Interquartile Range) 

Salary 0.030 
(0.025) 

0.025 
(0.033) 

    
R2 0.124 0.128 

Demand Density 0.010 
(0.005)

-0.015 
(0.012)

Sand and Gravel 0.098* 
(0.023)

0.087* 
(0.040)

Cement 0.145* 
(0.050)

0.149* 
(0.063)

Price Dispersion 
(90-10 Percentile Ratio) 

Salary 0.054* 
(0.022) 

0.054 
(0.030) 

    
Year Dummies?  Yes Yes 

Demand Controls?  No Yes 
 
Notes: This table shows results obtained when input-price moments are included in the output-
price-moment regressions (coefficients for covariates have been suppressed).  The sample 
consists of 575 region-year observations (362 in the specification that includes demand controls) 
with at least two plants for which I have non-imputed output and input price data.  Reported 
standard errors are robust to heteroskedasticity, and an asterisk denotes significance at the 5 
percent level. 
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